Tiantian He , Yang Liu , Yew-Soon Ong , Xiaohu Wu , Xin Luo
{"title":"Polarized message-passing in graph neural networks","authors":"Tiantian He , Yang Liu , Yew-Soon Ong , Xiaohu Wu , Xin Luo","doi":"10.1016/j.artint.2024.104129","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present Polarized message-passing (PMP), a novel paradigm to revolutionize the design of message-passing graph neural networks (GNNs). In contrast to existing methods, PMP captures the power of node-node similarity and dissimilarity to acquire dual sources of messages from neighbors. The messages are then coalesced to enable GNNs to learn expressive representations from sparse but strongly correlated neighbors. Three novel GNNs based on the PMP paradigm, namely PMP graph convolutional network (PMP-GCN), PMP graph attention network (PMP-GAT), and PMP graph PageRank network (PMP-GPN) are proposed to perform various downstream tasks. Theoretical analysis is also conducted to verify the high expressiveness of the proposed PMP-based GNNs. In addition, an empirical study of five learning tasks based on 12 real-world datasets is conducted to validate the performances of PMP-GCN, PMP-GAT, and PMP-GPN. The proposed PMP-GCN, PMP-GAT, and PMP-GPN outperform numerous strong message-passing GNNs across all five learning tasks, demonstrating the effectiveness of the proposed PMP paradigm.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"331 ","pages":"Article 104129"},"PeriodicalIF":5.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0004370224000651/pdfft?md5=62b63fb2137ae3e5f64fb20e2a18fdb1&pid=1-s2.0-S0004370224000651-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224000651","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present Polarized message-passing (PMP), a novel paradigm to revolutionize the design of message-passing graph neural networks (GNNs). In contrast to existing methods, PMP captures the power of node-node similarity and dissimilarity to acquire dual sources of messages from neighbors. The messages are then coalesced to enable GNNs to learn expressive representations from sparse but strongly correlated neighbors. Three novel GNNs based on the PMP paradigm, namely PMP graph convolutional network (PMP-GCN), PMP graph attention network (PMP-GAT), and PMP graph PageRank network (PMP-GPN) are proposed to perform various downstream tasks. Theoretical analysis is also conducted to verify the high expressiveness of the proposed PMP-based GNNs. In addition, an empirical study of five learning tasks based on 12 real-world datasets is conducted to validate the performances of PMP-GCN, PMP-GAT, and PMP-GPN. The proposed PMP-GCN, PMP-GAT, and PMP-GPN outperform numerous strong message-passing GNNs across all five learning tasks, demonstrating the effectiveness of the proposed PMP paradigm.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.