{"title":"RFI-DRUnet: Restoring dynamic spectra corrupted by radio frequency interference—Application to pulsar observations","authors":"X. Zhang , I. Cognard , N. Dobigeon","doi":"10.1016/j.ascom.2024.100822","DOIUrl":null,"url":null,"abstract":"<div><p>Radio frequency interference (RFI) has been an enduring concern in radio astronomy, particularly for the observations of pulsars which require high timing precision and data sensitivity. In most works of the literature, RFI mitigation has been formulated as a detection task that consists of localizing possible RFI in dynamic spectra. This strategy inevitably leads to a potential loss of information since parts of the signal identified as possibly RFI-corrupted are generally not considered in the subsequent data processing pipeline. Conversely, this work proposes to tackle RFI mitigation as a joint detection and restoration that allows parts of the dynamic spectrum affected by RFI to be not only identified but also recovered. The proposed supervised method relies on a deep convolutional network whose architecture inherits the performance reached by a recent yet popular image-denoising network. To train this network, a whole simulation framework is built to generate large data sets according to physics-inspired and statistical models of the pulsar signals and of the RFI. The relevance of the proposed approach is quantitatively assessed by conducting extensive experiments. In particular, the results show that the restored dynamic spectra are sufficiently reliable to estimate pulsar times-of-arrivals with an accuracy close to the one that would be obtained from RFI-free signals.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"47 ","pages":"Article 100822"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213133724000374/pdfft?md5=8c069fb5422507d7990c3ec6d6ed82ed&pid=1-s2.0-S2213133724000374-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000374","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Radio frequency interference (RFI) has been an enduring concern in radio astronomy, particularly for the observations of pulsars which require high timing precision and data sensitivity. In most works of the literature, RFI mitigation has been formulated as a detection task that consists of localizing possible RFI in dynamic spectra. This strategy inevitably leads to a potential loss of information since parts of the signal identified as possibly RFI-corrupted are generally not considered in the subsequent data processing pipeline. Conversely, this work proposes to tackle RFI mitigation as a joint detection and restoration that allows parts of the dynamic spectrum affected by RFI to be not only identified but also recovered. The proposed supervised method relies on a deep convolutional network whose architecture inherits the performance reached by a recent yet popular image-denoising network. To train this network, a whole simulation framework is built to generate large data sets according to physics-inspired and statistical models of the pulsar signals and of the RFI. The relevance of the proposed approach is quantitatively assessed by conducting extensive experiments. In particular, the results show that the restored dynamic spectra are sufficiently reliable to estimate pulsar times-of-arrivals with an accuracy close to the one that would be obtained from RFI-free signals.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.