David A Ganz, Denise Esserman, Nancy K Latham, Michael Kane, Lillian C Min, Thomas M Gill, David B Reuben, Peter Peduzzi, Erich J Greene
{"title":"Validation of a Rule-Based ICD-10-CM Algorithm to Detect Fall Injuries in Medicare Data","authors":"David A Ganz, Denise Esserman, Nancy K Latham, Michael Kane, Lillian C Min, Thomas M Gill, David B Reuben, Peter Peduzzi, Erich J Greene","doi":"10.1093/gerona/glae096","DOIUrl":null,"url":null,"abstract":"Background Diagnosis-code-based algorithms to identify fall injuries in Medicare data are useful for ascertaining outcomes in interventional and observational studies. However, these algorithms have not been validated against a fully external reference standard, in ICD-10-CM, or in Medicare Advantage (MA) data. Methods We linked self-reported fall injuries leading to medical attention (FIMA) from the Strategies to Reduce Injuries and Develop Confidence in Elders (STRIDE) trial (reference standard) to Medicare fee-for-service (FFS) and MA data from 2015-2019. We measured the area under the receiver operating characteristic curve (AUC) based on sensitivity and specificity of a diagnosis-code-based algorithm against the reference standard for presence or absence of ≥1 FIMA within a specified window of dates, varying the window size to obtain points on the curve. We stratified results by source (FFS versus MA), trial arm (intervention versus control), and STRIDE’s ten participating healthcare systems. Results Both reference standard data and Medicare data were available for 4941 (of 5451) participants. The reference standard and algorithm identified 2054 and 2067 FIMA, respectively. The algorithm had 45% sensitivity (95% confidence interval [CI], 43%-47%) and 99% specificity (95% CI, 99%-99%) to identify reference standard FIMA within the same calendar month. The AUC was 0.79 (95% CI, 0.78-0.81) and was similar by FFS or MA data source or trial arm, but showed variation among STRIDE healthcare systems (AUC range by healthcare system, 0.71 to 0.84). Conclusions An ICD-10-CM algorithm to identify fall injuries demonstrated acceptable performance against an external reference standard, in both MA and FFS data.","PeriodicalId":22892,"journal":{"name":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glae096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background Diagnosis-code-based algorithms to identify fall injuries in Medicare data are useful for ascertaining outcomes in interventional and observational studies. However, these algorithms have not been validated against a fully external reference standard, in ICD-10-CM, or in Medicare Advantage (MA) data. Methods We linked self-reported fall injuries leading to medical attention (FIMA) from the Strategies to Reduce Injuries and Develop Confidence in Elders (STRIDE) trial (reference standard) to Medicare fee-for-service (FFS) and MA data from 2015-2019. We measured the area under the receiver operating characteristic curve (AUC) based on sensitivity and specificity of a diagnosis-code-based algorithm against the reference standard for presence or absence of ≥1 FIMA within a specified window of dates, varying the window size to obtain points on the curve. We stratified results by source (FFS versus MA), trial arm (intervention versus control), and STRIDE’s ten participating healthcare systems. Results Both reference standard data and Medicare data were available for 4941 (of 5451) participants. The reference standard and algorithm identified 2054 and 2067 FIMA, respectively. The algorithm had 45% sensitivity (95% confidence interval [CI], 43%-47%) and 99% specificity (95% CI, 99%-99%) to identify reference standard FIMA within the same calendar month. The AUC was 0.79 (95% CI, 0.78-0.81) and was similar by FFS or MA data source or trial arm, but showed variation among STRIDE healthcare systems (AUC range by healthcare system, 0.71 to 0.84). Conclusions An ICD-10-CM algorithm to identify fall injuries demonstrated acceptable performance against an external reference standard, in both MA and FFS data.