{"title":"A Bayesian model-based reduced major axis regression","authors":"Zhihua Ma, Ming-Hui Chen","doi":"10.1002/bimj.202300279","DOIUrl":null,"url":null,"abstract":"<p>Reduced major axis (RMA) regression, widely used in the fields of zoology, botany, ecology, biology, spectroscopy, and among others, outweighs the ordinary least square regression by relaxing the assumption that the covariates are without measurement errors. A Bayesian implementation of the RMA regression is presented in this paper, and the equivalence of the estimates of the parameters under the Bayesian and the frequentist frameworks is proved. This model-based Bayesian RMA method is advantageous since the posterior estimates, the standard deviations, as well as the credible intervals of the estimates can be obtained through Markov chain Monte Carlo methods directly. In addition, it is straightforward to extend to the multivariate RMA case. The performance of the Bayesian RMA approach is evaluated in the simulation study, and, finally, the proposed method is applied to analyze a dataset in the plantation.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300279","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reduced major axis (RMA) regression, widely used in the fields of zoology, botany, ecology, biology, spectroscopy, and among others, outweighs the ordinary least square regression by relaxing the assumption that the covariates are without measurement errors. A Bayesian implementation of the RMA regression is presented in this paper, and the equivalence of the estimates of the parameters under the Bayesian and the frequentist frameworks is proved. This model-based Bayesian RMA method is advantageous since the posterior estimates, the standard deviations, as well as the credible intervals of the estimates can be obtained through Markov chain Monte Carlo methods directly. In addition, it is straightforward to extend to the multivariate RMA case. The performance of the Bayesian RMA approach is evaluated in the simulation study, and, finally, the proposed method is applied to analyze a dataset in the plantation.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.