Explanation-Guided Adversarial Example Attacks

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Anli Yan , Xiaozhang Liu , Wanman Li , Hongwei Ye , Lang Li
{"title":"Explanation-Guided Adversarial Example Attacks","authors":"Anli Yan ,&nbsp;Xiaozhang Liu ,&nbsp;Wanman Li ,&nbsp;Hongwei Ye ,&nbsp;Lang Li","doi":"10.1016/j.bdr.2024.100451","DOIUrl":null,"url":null,"abstract":"<div><p>Neural network-based classifiers are vulnerable to adversarial example attacks even in a black-box setting. Existing adversarial example generation technologies mainly rely on optimization-based attacks, which optimize the objective function by iterative input perturbation. While being able to craft adversarial examples, these techniques require big budgets. Latest transfer-based attacks, though being limited queries, also have a disadvantage of low attack success rate. In this paper, we propose an adversarial example attack method called MEAttack using the model-agnostic explanation technology, which can more efficiently generate adversarial examples in the black-box setting with limited queries. The core idea is to design a novel model-agnostic explanation method for target models, and generate adversarial examples based on model explanations. We experimentally demonstrate that MEAttack outperforms the state-of-the-art attack technology, i.e., AutoZOOM. The success rate of MEAttack is 4.54%-47.42% higher than AutoZOOM, and its query efficiency is reduced by 2.6-4.2 times. Experimental results show that MEAttack is efficient in terms of both attack success rate and query efficiency.</p></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"36 ","pages":"Article 100451"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000273","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Neural network-based classifiers are vulnerable to adversarial example attacks even in a black-box setting. Existing adversarial example generation technologies mainly rely on optimization-based attacks, which optimize the objective function by iterative input perturbation. While being able to craft adversarial examples, these techniques require big budgets. Latest transfer-based attacks, though being limited queries, also have a disadvantage of low attack success rate. In this paper, we propose an adversarial example attack method called MEAttack using the model-agnostic explanation technology, which can more efficiently generate adversarial examples in the black-box setting with limited queries. The core idea is to design a novel model-agnostic explanation method for target models, and generate adversarial examples based on model explanations. We experimentally demonstrate that MEAttack outperforms the state-of-the-art attack technology, i.e., AutoZOOM. The success rate of MEAttack is 4.54%-47.42% higher than AutoZOOM, and its query efficiency is reduced by 2.6-4.2 times. Experimental results show that MEAttack is efficient in terms of both attack success rate and query efficiency.

解释引导的对抗性示例攻击
基于神经网络的分类器即使在黑盒环境中也容易受到对抗性示例攻击。现有的对抗示例生成技术主要依赖于基于优化的攻击,即通过迭代输入扰动来优化目标函数。这些技术虽然可以生成对抗示例,但需要大量预算。最新的基于转移的攻击虽然查询受限,但也存在攻击成功率低的缺点。在本文中,我们提出了一种名为 MEAttack 的对抗性示例攻击方法,它采用了模型无关解释技术,能在有限查询的黑盒环境中更高效地生成对抗性示例。其核心思想是为目标模型设计一种新颖的模型无关解释方法,并根据模型解释生成对抗示例。我们通过实验证明,MEAttack 优于最先进的攻击技术,即 AutoZOOM。MEAttack 的成功率比 AutoZOOM 高 4.54%-47.42%,查询效率降低了 2.6-4.2 倍。实验结果表明,MEAttack 在攻击成功率和查询效率方面都很有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data Research
Big Data Research Computer Science-Computer Science Applications
CiteScore
8.40
自引率
3.00%
发文量
0
期刊介绍: The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic. The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信