{"title":"A geometric proof for the root-independence of the greedoid polynomial of Eulerian branching greedoids","authors":"Lilla Tóthmérész","doi":"10.1016/j.jcta.2024.105891","DOIUrl":null,"url":null,"abstract":"<div><p>We define the root polytope of a regular oriented matroid, and show that the greedoid polynomial of an Eulerian branching greedoid rooted at vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is equivalent to the <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-polynomial of the root polytope of the dual of the graphic matroid.</p><p>As the definition of the root polytope is independent of the vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, this gives a geometric proof for the root-independence of the greedoid polynomial for Eulerian branching greedoids, a fact which was first proved by Swee Hong Chan, Kévin Perrot and Trung Van Pham using sandpile models. We also obtain that the greedoid polynomial does not change if we reverse every edge of an Eulerian digraph.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105891"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400030X/pdfft?md5=24b6ae0df2f0ec32e3f3bfc6f52f2e2c&pid=1-s2.0-S009731652400030X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652400030X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We define the root polytope of a regular oriented matroid, and show that the greedoid polynomial of an Eulerian branching greedoid rooted at vertex is equivalent to the -polynomial of the root polytope of the dual of the graphic matroid.
As the definition of the root polytope is independent of the vertex , this gives a geometric proof for the root-independence of the greedoid polynomial for Eulerian branching greedoids, a fact which was first proved by Swee Hong Chan, Kévin Perrot and Trung Van Pham using sandpile models. We also obtain that the greedoid polynomial does not change if we reverse every edge of an Eulerian digraph.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.