A geometric proof for the root-independence of the greedoid polynomial of Eulerian branching greedoids

IF 0.9 2区 数学 Q2 MATHEMATICS
Lilla Tóthmérész
{"title":"A geometric proof for the root-independence of the greedoid polynomial of Eulerian branching greedoids","authors":"Lilla Tóthmérész","doi":"10.1016/j.jcta.2024.105891","DOIUrl":null,"url":null,"abstract":"<div><p>We define the root polytope of a regular oriented matroid, and show that the greedoid polynomial of an Eulerian branching greedoid rooted at vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is equivalent to the <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-polynomial of the root polytope of the dual of the graphic matroid.</p><p>As the definition of the root polytope is independent of the vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, this gives a geometric proof for the root-independence of the greedoid polynomial for Eulerian branching greedoids, a fact which was first proved by Swee Hong Chan, Kévin Perrot and Trung Van Pham using sandpile models. We also obtain that the greedoid polynomial does not change if we reverse every edge of an Eulerian digraph.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105891"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400030X/pdfft?md5=24b6ae0df2f0ec32e3f3bfc6f52f2e2c&pid=1-s2.0-S009731652400030X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652400030X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define the root polytope of a regular oriented matroid, and show that the greedoid polynomial of an Eulerian branching greedoid rooted at vertex v0 is equivalent to the h-polynomial of the root polytope of the dual of the graphic matroid.

As the definition of the root polytope is independent of the vertex v0, this gives a geometric proof for the root-independence of the greedoid polynomial for Eulerian branching greedoids, a fact which was first proved by Swee Hong Chan, Kévin Perrot and Trung Van Pham using sandpile models. We also obtain that the greedoid polynomial does not change if we reverse every edge of an Eulerian digraph.

欧拉分支贪婪多项式根无关性的几何证明
我们定义了正则定向 matroid 的根多胞形,并证明了以顶点 v0 为根的欧拉分支 greedoid 的 greedoid 多项式等价于图形 matroid 对偶的根多胞形的⁎-多项式。由于根多胞形的定义与顶点 v0 无关,这就给出了欧拉分支 greedoid 多项式与根无关的几何证明,而这一事实最早是由 Swee Hong Chan、Kévin Perrot 和 Trung Van Pham 利用沙堆模型证明的。我们还得出,如果我们将欧拉图的每条边反转,greedoid 多项式也不会发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信