{"title":"Feed factor profile prediction model for two-component mixed powder in the twin-screw feeder","authors":"Yuki Kobayashi , Sanghong Kim , Takuya Nagato , Takuya Oishi , Manabu Kano","doi":"10.1016/j.ijpx.2024.100242","DOIUrl":null,"url":null,"abstract":"<div><p>In continuous pharmaceutical manufacturing processes, it is crucial to control the powder flow rate. The feeding process is characterized by the amount of powder delivered per screw rotation, referred to as the feed factor. This study aims to develop models for predicting the feed factor profiles (FFPs) of two-component mixed powders with various formulations, while most previous studies have focused on single-component powders. It further aims to identify the suitable model type and to determine the significance of material properties in enhancing prediction accuracy by using several FFP prediction models with different input variables. Four datasets from the experiment were generated with different ranges of the mass fraction of active pharmaceutical ingredients (API) and the powder weight in the hopper. The candidates for the model inputs are (a) the mass fraction of API, (b) process parameters, and (c) material properties. It is desirable to construct a high-performance prediction model without the material properties because their measurement is laborious. The results show that using (c) as input variables did not improve the prediction accuracy as much, thus there is no need to use them.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100242"},"PeriodicalIF":5.2000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000148/pdfft?md5=e39edc07e8ce19bfa70a064e4c6ae931&pid=1-s2.0-S2590156724000148-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156724000148","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In continuous pharmaceutical manufacturing processes, it is crucial to control the powder flow rate. The feeding process is characterized by the amount of powder delivered per screw rotation, referred to as the feed factor. This study aims to develop models for predicting the feed factor profiles (FFPs) of two-component mixed powders with various formulations, while most previous studies have focused on single-component powders. It further aims to identify the suitable model type and to determine the significance of material properties in enhancing prediction accuracy by using several FFP prediction models with different input variables. Four datasets from the experiment were generated with different ranges of the mass fraction of active pharmaceutical ingredients (API) and the powder weight in the hopper. The candidates for the model inputs are (a) the mass fraction of API, (b) process parameters, and (c) material properties. It is desirable to construct a high-performance prediction model without the material properties because their measurement is laborious. The results show that using (c) as input variables did not improve the prediction accuracy as much, thus there is no need to use them.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.