Tanka Raj Rana, Mazhar Abbas, Ethan Schwartz, Fangyuan Jiang, Muammer Y. Yaman, Zhe Xu, David S. Ginger and Devin MacKenzie*,
{"title":"Scalable Passivation Strategies to Improve Efficiency of Slot Die-Coated Perovskite Solar Cells","authors":"Tanka Raj Rana, Mazhar Abbas, Ethan Schwartz, Fangyuan Jiang, Muammer Y. Yaman, Zhe Xu, David S. Ginger and Devin MacKenzie*, ","doi":"10.1021/acsenergylett.4c00651","DOIUrl":null,"url":null,"abstract":"<p >The power conversion efficiency (PCE) of spin-coated, ≪1 cm<sup>2</sup>, perovskite solar cells has exceeded 25%. The PCEs of the large-area perovskite solar cells made by scalable deposition techniques, however, are typically lower. One frequent element to improving performance in perovskites has been the utilization of nonscalable and low materials utilization, spin-based passivation treatments to reduce traps and defects in perovskite thin film absorber layers. Herein, we report a more sustainable passivation technique for large-area perovskite films via subsequent linear slot-die coating of a benzylammonium iodide (BAI) passivant formulation on the surface of previously deposited perovskite absorber layers. The BAI-passivated perovskite films demonstrate apparent larger grain size, higher photoluminescence (PL) intensity, reduced recombination rates as evidenced by longer PL lifetimes, and better spatial PL uniformity. The champion cell with optimized slot-die BAI passivation exhibited an improved PCE of ∼20.3%, as compared to 18.7% for the control device.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 4","pages":"1888–1894"},"PeriodicalIF":18.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00651","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The power conversion efficiency (PCE) of spin-coated, ≪1 cm2, perovskite solar cells has exceeded 25%. The PCEs of the large-area perovskite solar cells made by scalable deposition techniques, however, are typically lower. One frequent element to improving performance in perovskites has been the utilization of nonscalable and low materials utilization, spin-based passivation treatments to reduce traps and defects in perovskite thin film absorber layers. Herein, we report a more sustainable passivation technique for large-area perovskite films via subsequent linear slot-die coating of a benzylammonium iodide (BAI) passivant formulation on the surface of previously deposited perovskite absorber layers. The BAI-passivated perovskite films demonstrate apparent larger grain size, higher photoluminescence (PL) intensity, reduced recombination rates as evidenced by longer PL lifetimes, and better spatial PL uniformity. The champion cell with optimized slot-die BAI passivation exhibited an improved PCE of ∼20.3%, as compared to 18.7% for the control device.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.