High-Entropy Engineering of Cubic SiP with Metallic Conductivity for Fast and Durable Li-Ion Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenwu Li, Jeng-Han Wang, Lufeng Yang, Yanhong Li, Hung-Yu Yen, Jie Chen, Lunhua He, Zhiliang Liu, Piaoping Yang, Zaiping Guo, Meilin Liu
{"title":"High-Entropy Engineering of Cubic SiP with Metallic Conductivity for Fast and Durable Li-Ion Batteries","authors":"Wenwu Li,&nbsp;Jeng-Han Wang,&nbsp;Lufeng Yang,&nbsp;Yanhong Li,&nbsp;Hung-Yu Yen,&nbsp;Jie Chen,&nbsp;Lunhua He,&nbsp;Zhiliang Liu,&nbsp;Piaoping Yang,&nbsp;Zaiping Guo,&nbsp;Meilin Liu","doi":"10.1002/adma.202314054","DOIUrl":null,"url":null,"abstract":"<p>A cost-effective, scalable ball milling process is employed to synthesize the InGeSiP<sub>3</sub> compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si-based anodes for Lithium-ion batteries. Experimental measurements and first-principles calculations confirm that the synthesized InGeSiP<sub>3</sub> exhibits significantly higher electronic conductivity, larger Li-ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P<sub>2</sub> or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP<sub>3</sub> undergoes a reversible Li-storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g<sup>−1</sup> with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP<sub>3</sub>-based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g<sup>−1</sup> capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g<sup>−1</sup> and remarkable high-rate capability, achieving 882 mA h g<sup>−1</sup> at 10 000 mA g<sup>−1</sup>. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP<sub>5</sub>, CuZnInGeSiP<sub>5</sub>, GaCuZnInGeSiP<sub>6</sub>, InGeSiP<sub>2</sub>S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non-metals, paving the way for the electrochemical energy storage application of high-entropy silicon-phosphides.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 26","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202314054","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A cost-effective, scalable ball milling process is employed to synthesize the InGeSiP3 compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si-based anodes for Lithium-ion batteries. Experimental measurements and first-principles calculations confirm that the synthesized InGeSiP3 exhibits significantly higher electronic conductivity, larger Li-ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P2 or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP3 undergoes a reversible Li-storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g−1 with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP3-based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g−1 capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g−1 and remarkable high-rate capability, achieving 882 mA h g−1 at 10 000 mA g−1. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP5, CuZnInGeSiP5, GaCuZnInGeSiP6, InGeSiP2S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non-metals, paving the way for the electrochemical energy storage application of high-entropy silicon-phosphides.

Abstract Image

具有金属导电性的立方 SiP 高熵工程,用于制造快速耐用的锂离子电池
为了解决锂离子电池(LIB)中硅基阳极反应动力学迟缓的问题,我们采用了一种具有成本效益、可扩展的球磨工艺来合成具有立方 ZnS 结构的 InGeSiP3 化合物。实验测量和第一原理计算证实,与 InGe(或 Si)P2 或 In(或 Ge,或 Si)P 母相相比,合成的 InGeSiP3 具有更高的电子电导率、更大的锂离子扩散率和更强的体积变化耐受性。多种表征验证了 InGeSiP3 的可逆锂存储机制,包括插层、转化和合金反应,从而产生 1,733 mA h g-1 的可逆容量,初始库仑效率为 90%。此外,基于 InGeSiP3 的电极还表现出卓越的循环稳定性,在 2,000 mA g-1 的条件下循环 1,500 次后,仍能保持 1,121 mA h g-1 的容量,且保持率高达 87%。受高熵特性的启发,我们将合成方法扩展到高熵的 GaCu(或 Zn)InGeSiP5、CuZnInGeSiP5、GaCuZnInGeSiP6、InGeSiP2S(或 Se)和 InGeSiPSSe。这一努力克服了不同金属和非金属之间的不溶性,为高熵硅磷化物的电化学储能应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信