Yu-Chi Chen, Song-Yi Hsu, Xin Xie, Saru Kumari, Sachin Kumar, Joel Rodrigues, Bander A. Alzahrani
{"title":"Privacy preserving support vector machine based on federated learning for distributed IoT-enabled data analysis","authors":"Yu-Chi Chen, Song-Yi Hsu, Xin Xie, Saru Kumari, Sachin Kumar, Joel Rodrigues, Bander A. Alzahrani","doi":"10.1111/coin.12636","DOIUrl":null,"url":null,"abstract":"<p>In a smart city, IoT devices are required to support monitoring of normal operations such as traffic, infrastructure, and the crowd of people. IoT-enabled systems offered by many IoT devices are expected to achieve sustainable developments from the information collected by the smart city. Indeed, artificial intelligence (AI) and machine learning (ML) are well-known methods for achieving this goal as long as the system framework and problem statement are well prepared. However, to better use AI/ML, the training data should be as global as possible, which can prevent the model from working only on local data. Such data can be obtained from different sources, but this induces the privacy issue where at least one party collects all data in the plain. The main focus of this article is on support vector machines (SVM). We aim to present a solution to the privacy issue and provide confidentiality to protect the data. We build a privacy-preserving scheme for SVM (SecretSVM) based on the framework of federated learning and distributed consensus. In this scheme, data providers self-organize and obtain training parameters of SVM without revealing their own models. Finally, experiments with real data analysis show the feasibility of potential applications in smart cities. This article is the extended version of that of Hsu et al. (Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. ACM; 2020:904-906).</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12636","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In a smart city, IoT devices are required to support monitoring of normal operations such as traffic, infrastructure, and the crowd of people. IoT-enabled systems offered by many IoT devices are expected to achieve sustainable developments from the information collected by the smart city. Indeed, artificial intelligence (AI) and machine learning (ML) are well-known methods for achieving this goal as long as the system framework and problem statement are well prepared. However, to better use AI/ML, the training data should be as global as possible, which can prevent the model from working only on local data. Such data can be obtained from different sources, but this induces the privacy issue where at least one party collects all data in the plain. The main focus of this article is on support vector machines (SVM). We aim to present a solution to the privacy issue and provide confidentiality to protect the data. We build a privacy-preserving scheme for SVM (SecretSVM) based on the framework of federated learning and distributed consensus. In this scheme, data providers self-organize and obtain training parameters of SVM without revealing their own models. Finally, experiments with real data analysis show the feasibility of potential applications in smart cities. This article is the extended version of that of Hsu et al. (Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. ACM; 2020:904-906).
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.