Ying Yu , Ming Wan , Jin Qian , Duoqian Miao , Zhiqiang Zhang , Pengfei Zhao
{"title":"Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets","authors":"Ying Yu , Ming Wan , Jin Qian , Duoqian Miao , Zhiqiang Zhang , Pengfei Zhao","doi":"10.1016/j.ijar.2024.109181","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with irrelevant and redundant features. To tackle this, several multi-label feature selection (MLFS) algorithms have emerged as vital preprocessing steps. Nonetheless, existing MLFS methods have their shortcomings. Primarily, while they excel at harnessing label-feature relationships, they often struggle to leverage inter-feature information effectively. Secondly, numerous MLFS approaches overlook the uncertainty in the boundary domain, despite its critical role in identifying high-quality features. To address these issues, this paper introduces a novel MLFS algorithm, named VMFS. It innovatively integrates multi-granulation rough sets with three-way decision, leveraging multi-granularity decision-theoretic rough sets (MGDRS) with variable degrees for optimal performance. Initially, we construct coarse decision (RDC), fine decision (RDF), and uncertainty decision (RDU) functions for each object based on MGDRS with variable degrees. These decision functions then quantify the dependence of attribute subsets, considering both deterministic and uncertain aspects. Finally, we employ the dependency to assess attribute importance and rank them accordingly. Our proposed method has undergone rigorous evaluation on various standard multi-label datasets, demonstrating its superiority. Experimental results consistently show that VMFS significantly outperforms other algorithms on most datasets, underscoring its effectiveness and reliability in multi-label learning tasks.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"169 ","pages":"Article 109181"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24000689","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with irrelevant and redundant features. To tackle this, several multi-label feature selection (MLFS) algorithms have emerged as vital preprocessing steps. Nonetheless, existing MLFS methods have their shortcomings. Primarily, while they excel at harnessing label-feature relationships, they often struggle to leverage inter-feature information effectively. Secondly, numerous MLFS approaches overlook the uncertainty in the boundary domain, despite its critical role in identifying high-quality features. To address these issues, this paper introduces a novel MLFS algorithm, named VMFS. It innovatively integrates multi-granulation rough sets with three-way decision, leveraging multi-granularity decision-theoretic rough sets (MGDRS) with variable degrees for optimal performance. Initially, we construct coarse decision (RDC), fine decision (RDF), and uncertainty decision (RDU) functions for each object based on MGDRS with variable degrees. These decision functions then quantify the dependence of attribute subsets, considering both deterministic and uncertain aspects. Finally, we employ the dependency to assess attribute importance and rank them accordingly. Our proposed method has undergone rigorous evaluation on various standard multi-label datasets, demonstrating its superiority. Experimental results consistently show that VMFS significantly outperforms other algorithms on most datasets, underscoring its effectiveness and reliability in multi-label learning tasks.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.