A universal lower bound for certain quadratic integrals of automorphic L–functions

Pub Date : 2024-03-21 DOI:10.1016/j.jnt.2024.02.018
Laurent Clozel , Peter Sarnak
{"title":"A universal lower bound for certain quadratic integrals of automorphic L–functions","authors":"Laurent Clozel ,&nbsp;Peter Sarnak","doi":"10.1016/j.jnt.2024.02.018","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>π</em> be a cuspidal unitary representation od <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>A</mi><mo>)</mo></math></span> where <span><math><mi>A</mi></math></span> denotes the ring of adèles of <span><math><mi>Q</mi></math></span>. Let <span><math><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></math></span> be its <em>L</em>-function. We introduce a universal lower bound for the integral <span><math><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mo>∞</mo></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></msubsup><mo>|</mo><mfrac><mrow><mi>L</mi><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>i</mi><mi>t</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>i</mi><mi>t</mi><mo>−</mo><mi>s</mi></mrow></mfrac><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>t</mi></math></span> where <em>s</em> is equal to 0 or is a zero of <span><math><mi>L</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> on the critical line. In the main text, the proof is given for <span><math><mi>m</mi><mo>≤</mo><mn>2</mn></math></span> and under a few assumptions on <em>π</em>. It relies on the Mellin transform; the proof involves an extension of a deep result of Friedlander-Iwaniec. An application is given to the abscissa of convergence of the Dirichlet series <span><math><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></math></span>. In the Appendix, written with Peter Sarnak, the proof is made unconditional for general <em>m</em>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let π be a cuspidal unitary representation od GL(m,A) where A denotes the ring of adèles of Q. Let L(s,π) be its L-function. We introduce a universal lower bound for the integral +|L(12+it,π)12+its|2dt where s is equal to 0 or is a zero of L(s) on the critical line. In the main text, the proof is given for m2 and under a few assumptions on π. It relies on the Mellin transform; the proof involves an extension of a deep result of Friedlander-Iwaniec. An application is given to the abscissa of convergence of the Dirichlet series L(s,π). In the Appendix, written with Peter Sarnak, the proof is made unconditional for general m.

分享
查看原文
某些自动 L 函数二次积分的通用下界
设 π 是一个尖顶单元表示 od GL(m,A),其中 A 表示 Q 的阿代尔环。我们引入了积分∫-∞+∞|L(12+it,π)12+it-s|2dt 的普遍下界,其中 s 等于 0 或为临界线上 L(s) 的零点。在正文中,我们给出了 m≤2 和 π 的几个假设条件下的证明,它依赖于梅林变换;证明涉及弗里德兰德-伊瓦尼耶克的一个深层结果的扩展。它还被应用于狄利克特数列 L(s,π) 的收敛尾差。在与彼得-萨尔纳克(Peter Sarnak)共同撰写的附录中,证明了一般 m 的无条件性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信