{"title":"A universal lower bound for certain quadratic integrals of automorphic L–functions","authors":"Laurent Clozel , Peter Sarnak","doi":"10.1016/j.jnt.2024.02.018","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>π</em> be a cuspidal unitary representation od <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>A</mi><mo>)</mo></math></span> where <span><math><mi>A</mi></math></span> denotes the ring of adèles of <span><math><mi>Q</mi></math></span>. Let <span><math><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></math></span> be its <em>L</em>-function. We introduce a universal lower bound for the integral <span><math><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mo>∞</mo></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></msubsup><mo>|</mo><mfrac><mrow><mi>L</mi><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>i</mi><mi>t</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>i</mi><mi>t</mi><mo>−</mo><mi>s</mi></mrow></mfrac><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>t</mi></math></span> where <em>s</em> is equal to 0 or is a zero of <span><math><mi>L</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> on the critical line. In the main text, the proof is given for <span><math><mi>m</mi><mo>≤</mo><mn>2</mn></math></span> and under a few assumptions on <em>π</em>. It relies on the Mellin transform; the proof involves an extension of a deep result of Friedlander-Iwaniec. An application is given to the abscissa of convergence of the Dirichlet series <span><math><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></math></span>. In the Appendix, written with Peter Sarnak, the proof is made unconditional for general <em>m</em>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let π be a cuspidal unitary representation od where denotes the ring of adèles of . Let be its L-function. We introduce a universal lower bound for the integral where s is equal to 0 or is a zero of on the critical line. In the main text, the proof is given for and under a few assumptions on π. It relies on the Mellin transform; the proof involves an extension of a deep result of Friedlander-Iwaniec. An application is given to the abscissa of convergence of the Dirichlet series . In the Appendix, written with Peter Sarnak, the proof is made unconditional for general m.