{"title":"A universal lower bound for certain quadratic integrals of automorphic L–functions","authors":"Laurent Clozel , Peter Sarnak","doi":"10.1016/j.jnt.2024.02.018","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>π</em> be a cuspidal unitary representation od <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>A</mi><mo>)</mo></math></span> where <span><math><mi>A</mi></math></span> denotes the ring of adèles of <span><math><mi>Q</mi></math></span>. Let <span><math><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></math></span> be its <em>L</em>-function. We introduce a universal lower bound for the integral <span><math><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mo>∞</mo></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></msubsup><mo>|</mo><mfrac><mrow><mi>L</mi><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>i</mi><mi>t</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>i</mi><mi>t</mi><mo>−</mo><mi>s</mi></mrow></mfrac><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>t</mi></math></span> where <em>s</em> is equal to 0 or is a zero of <span><math><mi>L</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> on the critical line. In the main text, the proof is given for <span><math><mi>m</mi><mo>≤</mo><mn>2</mn></math></span> and under a few assumptions on <em>π</em>. It relies on the Mellin transform; the proof involves an extension of a deep result of Friedlander-Iwaniec. An application is given to the abscissa of convergence of the Dirichlet series <span><math><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></math></span>. In the Appendix, written with Peter Sarnak, the proof is made unconditional for general <em>m</em>.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"261 ","pages":"Pages 252-298"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000684","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let π be a cuspidal unitary representation od where denotes the ring of adèles of . Let be its L-function. We introduce a universal lower bound for the integral where s is equal to 0 or is a zero of on the critical line. In the main text, the proof is given for and under a few assumptions on π. It relies on the Mellin transform; the proof involves an extension of a deep result of Friedlander-Iwaniec. An application is given to the abscissa of convergence of the Dirichlet series . In the Appendix, written with Peter Sarnak, the proof is made unconditional for general m.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.