The complex genera, symmetric functions and multiple zeta values

IF 0.9 2区 数学 Q2 MATHEMATICS
Ping Li
{"title":"The complex genera, symmetric functions and multiple zeta values","authors":"Ping Li","doi":"10.1016/j.jcta.2024.105893","DOIUrl":null,"url":null,"abstract":"<div><p>We examine the coefficients in front of Chern numbers for complex genera, and pay special attention to the <span><math><msup><mrow><mtext>Td</mtext></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span>-genus, the Γ-genus as well as the Todd genus. Some related geometric applications to hyper-Kähler and Calabi-Yau manifolds are discussed. Along this line and building on the work of Doubilet in 1970s, various Hoffman-type formulas for multiple-(star) zeta values and transition matrices among canonical bases of the ring of symmetric functions can be uniformly treated in a more general framework.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105893"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000323","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the coefficients in front of Chern numbers for complex genera, and pay special attention to the Td12-genus, the Γ-genus as well as the Todd genus. Some related geometric applications to hyper-Kähler and Calabi-Yau manifolds are discussed. Along this line and building on the work of Doubilet in 1970s, various Hoffman-type formulas for multiple-(star) zeta values and transition matrices among canonical bases of the ring of symmetric functions can be uniformly treated in a more general framework.

复属、对称函数和多重zeta值
我们研究了复属的切尔数前面的系数,并特别关注 Td12 属、Γ 属和 Todd 属。还讨论了超凯勒流形和卡拉比-尤流形的一些相关几何应用。沿着这一思路,在杜比莱 1970 年代工作的基础上,各种霍夫曼式的多重(星形)zeta 值公式和对称函数环的典范基之间的过渡矩阵可以在一个更普遍的框架内统一处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信