The search for sparse data in molecular datasets: Application of active learning to identify extremely low volatile organic compounds

IF 3.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL
Vitus Besel , Milica Todorović , Theo Kurtén , Hanna Vehkamäki , Patrick Rinke
{"title":"The search for sparse data in molecular datasets: Application of active learning to identify extremely low volatile organic compounds","authors":"Vitus Besel ,&nbsp;Milica Todorović ,&nbsp;Theo Kurtén ,&nbsp;Hanna Vehkamäki ,&nbsp;Patrick Rinke","doi":"10.1016/j.jaerosci.2024.106375","DOIUrl":null,"url":null,"abstract":"<div><p>The formation of aerosol particles in the atmosphere is driven by the gas to particle conversion of <em>extremely low volatile organic compounds</em> (ELVOC), organic compounds with a particularly low saturation vapor pressure (<span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Sat</mi></mrow></msub></math></span>). Identifying ELVOCs and their chemical structures is both experimentally and theoretically challenging: Measuring the very low <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Sat</mi></mrow></msub></math></span> of ELVOCs is extremely difficult, and computing <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Sat</mi></mrow></msub></math></span> for these often large molecules is computationally costly. Moreover, ELVOCs are underrepresented in available datasets of atmospheric organic species, which reduces the value of statistical models built on such data. We propose an active learning (AL) approach to efficiently identify ELVOCs in a data pool of atmospheric organic species with initially unknown <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Sat</mi></mrow></msub></math></span>. We assess the performance of our AL approach by comparing it to traditional machine learning regression methods, as well as ELVOC classification based on molecular properties. AL proves to be a highly efficient method for ELVOC identification with limitations on the type of ELVOC it can identify. We also show that traditional machine learning or molecular property-based methods can be adequate tools depending on the available data and desired degree of efficiency.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021850224000429/pdfft?md5=37c98b723eebcb80f08de6db27508c46&pid=1-s2.0-S0021850224000429-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850224000429","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of aerosol particles in the atmosphere is driven by the gas to particle conversion of extremely low volatile organic compounds (ELVOC), organic compounds with a particularly low saturation vapor pressure (pSat). Identifying ELVOCs and their chemical structures is both experimentally and theoretically challenging: Measuring the very low pSat of ELVOCs is extremely difficult, and computing pSat for these often large molecules is computationally costly. Moreover, ELVOCs are underrepresented in available datasets of atmospheric organic species, which reduces the value of statistical models built on such data. We propose an active learning (AL) approach to efficiently identify ELVOCs in a data pool of atmospheric organic species with initially unknown pSat. We assess the performance of our AL approach by comparing it to traditional machine learning regression methods, as well as ELVOC classification based on molecular properties. AL proves to be a highly efficient method for ELVOC identification with limitations on the type of ELVOC it can identify. We also show that traditional machine learning or molecular property-based methods can be adequate tools depending on the available data and desired degree of efficiency.

Abstract Image

在分子数据集中寻找稀疏数据:应用主动学习识别极低挥发性有机化合物
极低挥发性有机化合物(ELVOC)是饱和蒸气压(pSat)特别低的有机化合物,大气中气溶胶粒子的形成是由气体到粒子的转化所驱动的。识别 ELVOC 及其化学结构在实验和理论上都具有挑战性:测量 ELVOC 极低的 pSat 极其困难,而计算这些大分子的 pSat 又耗费大量计算成本。此外,ELVOC 在现有的大气有机物数据集中代表性不足,这降低了基于此类数据建立的统计模型的价值。我们提出了一种主动学习(AL)方法,可在初始 pSat 未知的大气有机物数据池中高效识别 ELVOC。通过与传统的机器学习回归方法以及基于分子特性的 ELVOC 分类方法进行比较,我们对 AL 方法的性能进行了评估。事实证明,AL 是一种高效的 ELVOC 识别方法,但它能识别的 ELVOC 类型有限。我们还表明,传统的机器学习或基于分子特性的方法也可以成为适当的工具,这取决于可用数据和所需的效率程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信