{"title":"High stability plasma illumination from micro discharges with nanodiamond decorated laser induced graphene electrodes","authors":"S. Suman , S.K. Sethy , K.J. Sankaran","doi":"10.1016/j.fpp.2024.100047","DOIUrl":null,"url":null,"abstract":"<div><p>Superior lifetime stability for the microplasma device developed by decorating nanodiamonds (nDs) on laser induced graphene (LIG) is reported. Upon overwhelming the difficulty of poor stability in graphene, the nD-LIG displays exceptional lifetime stability of 1770s verified at an applied voltage of 340 V. But, the lifetime stability of LIG is only 718 s at the same applied voltage. Therefore, the nD-LIG with enhanced lifetime stability have pronounced prospective as cathodes in microplasma device applications.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100047"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000128/pdfft?md5=e82ca17af359f13027806f02cb9aebaf&pid=1-s2.0-S2772828524000128-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828524000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Superior lifetime stability for the microplasma device developed by decorating nanodiamonds (nDs) on laser induced graphene (LIG) is reported. Upon overwhelming the difficulty of poor stability in graphene, the nD-LIG displays exceptional lifetime stability of 1770s verified at an applied voltage of 340 V. But, the lifetime stability of LIG is only 718 s at the same applied voltage. Therefore, the nD-LIG with enhanced lifetime stability have pronounced prospective as cathodes in microplasma device applications.