The binomial-Stirling–Eulerian polynomials

IF 1 3区 数学 Q1 MATHEMATICS
Kathy Q. Ji , Zhicong Lin
{"title":"The binomial-Stirling–Eulerian polynomials","authors":"Kathy Q. Ji ,&nbsp;Zhicong Lin","doi":"10.1016/j.ejc.2024.103962","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the binomial-Stirling–Eulerian polynomials, denoted <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>|</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span>, which encompass binomial coefficients, Eulerian numbers and two Stirling statistics: the left-to-right minima and the right-to-left minima. When <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></math></span>, these polynomials reduce to the binomial-Eulerian polynomials <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, originally named by Shareshian and Wachs and explored by Chung–Graham–Knuth and Postnikov–Reiner–Williams. We investigate the <span><math><mi>γ</mi></math></span>-positivity of <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>|</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> from two aspects: <span><math><mo>•</mo></math></span> firstly by employing the grammatical calculus introduced by Chen; <span><math><mo>•</mo></math></span> and secondly by constructing a new group action on permutations. These results extend the symmetric Eulerian identity found by Chung, Graham and Knuth, and the <span><math><mi>γ</mi></math></span>-positivity of <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> first demonstrated by Postnikov, Reiner and Williams.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000477","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the binomial-Stirling–Eulerian polynomials, denoted Ãn(x,y|α), which encompass binomial coefficients, Eulerian numbers and two Stirling statistics: the left-to-right minima and the right-to-left minima. When α=1, these polynomials reduce to the binomial-Eulerian polynomials Ãn(x,y), originally named by Shareshian and Wachs and explored by Chung–Graham–Knuth and Postnikov–Reiner–Williams. We investigate the γ-positivity of Ãn(x,y|α) from two aspects: firstly by employing the grammatical calculus introduced by Chen; and secondly by constructing a new group action on permutations. These results extend the symmetric Eulerian identity found by Chung, Graham and Knuth, and the γ-positivity of Ãn(x,y) first demonstrated by Postnikov, Reiner and Williams.

二项式-斯特林-欧拉多项式
我们引入了二项式-斯特林-欧拉多项式,表示为 Ãn(x,y|α),其中包含二项式系数、欧拉数和两个斯特林统计量:从左到右的最小值和从右到左的最小值。当 α=1 时,这些多项式简化为二项式-欧拉多项式 Ãn(x,y),最初由 Shareshian 和 Wachs 命名,Chung-Graham-Knuth 和 Postnikov-Reiner-Williams 对其进行了探讨。我们从两个方面研究了 Ãn(x,y|α) 的 γ 正性:- 其次,我们在排列组合上构建了一个新的群作用。这些结果扩展了 Chung、Graham 和 Knuth 发现的对称欧拉同一性,以及 Postnikov、Reiner 和 Williams 首次证明的 Ãn(x,y) 的 γ 正性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信