{"title":"The binomial-Stirling–Eulerian polynomials","authors":"Kathy Q. Ji , Zhicong Lin","doi":"10.1016/j.ejc.2024.103962","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the binomial-Stirling–Eulerian polynomials, denoted <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>|</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span>, which encompass binomial coefficients, Eulerian numbers and two Stirling statistics: the left-to-right minima and the right-to-left minima. When <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></math></span>, these polynomials reduce to the binomial-Eulerian polynomials <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, originally named by Shareshian and Wachs and explored by Chung–Graham–Knuth and Postnikov–Reiner–Williams. We investigate the <span><math><mi>γ</mi></math></span>-positivity of <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>|</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> from two aspects: <span><math><mo>•</mo></math></span> firstly by employing the grammatical calculus introduced by Chen; <span><math><mo>•</mo></math></span> and secondly by constructing a new group action on permutations. These results extend the symmetric Eulerian identity found by Chung, Graham and Knuth, and the <span><math><mi>γ</mi></math></span>-positivity of <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> first demonstrated by Postnikov, Reiner and Williams.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000477","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the binomial-Stirling–Eulerian polynomials, denoted , which encompass binomial coefficients, Eulerian numbers and two Stirling statistics: the left-to-right minima and the right-to-left minima. When , these polynomials reduce to the binomial-Eulerian polynomials , originally named by Shareshian and Wachs and explored by Chung–Graham–Knuth and Postnikov–Reiner–Williams. We investigate the -positivity of from two aspects: firstly by employing the grammatical calculus introduced by Chen; and secondly by constructing a new group action on permutations. These results extend the symmetric Eulerian identity found by Chung, Graham and Knuth, and the -positivity of first demonstrated by Postnikov, Reiner and Williams.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.