Prabhakaran Koothu Kesavan;Umashankar Subramaniam;Dhafer J. Almakhles
{"title":"Laboratory Implementation of Direct Torque Controller based Speed Loop Pseudo Derivative Feedforward Controller for PMSM Drive","authors":"Prabhakaran Koothu Kesavan;Umashankar Subramaniam;Dhafer J. Almakhles","doi":"10.30941/CESTEMS.2024.00004","DOIUrl":null,"url":null,"abstract":"This paper, evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward (PDFF) controller-based direct torque controller (DTC) for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller (HCC). The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed, electromagnetic torque, and stator current. Two case studies, one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation, has been validated to show the effectiveness of the proposed control strategy. The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488431","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CES Transactions on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10488431/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper, evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward (PDFF) controller-based direct torque controller (DTC) for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller (HCC). The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed, electromagnetic torque, and stator current. Two case studies, one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation, has been validated to show the effectiveness of the proposed control strategy. The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.