Chenya Zhao , Binwei Zhao , Yanxun Chang , Tao Feng , Xiaomiao Wang , Menglong Zhang
{"title":"Cyclic relative difference families with block size four and their applications","authors":"Chenya Zhao , Binwei Zhao , Yanxun Chang , Tao Feng , Xiaomiao Wang , Menglong Zhang","doi":"10.1016/j.jcta.2024.105890","DOIUrl":null,"url":null,"abstract":"<div><p>Given a subgroup <em>H</em> of a group <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mo>+</mo><mo>)</mo></math></span>, a <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> difference family (DF) is a set <span><math><mi>F</mi></math></span> of <em>k</em>-subsets of <em>G</em> such that <span><math><mo>{</mo><mi>f</mi><mo>−</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>f</mi><mo>,</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>F</mi><mo>,</mo><mi>f</mi><mo>≠</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>F</mi><mo>∈</mo><mi>F</mi><mo>}</mo><mo>=</mo><mi>G</mi><mo>∖</mo><mi>H</mi></math></span>. Let <span><math><mi>g</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub></math></span> be the subgroup of order <em>h</em> in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub></math></span> generated by <em>g</em>. A <span><math><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-DF is called cyclic and written as a <span><math><mo>(</mo><mi>g</mi><mi>h</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-CDF. This paper shows that for <span><math><mi>h</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>}</mo></math></span>, there exists a <span><math><mo>(</mo><mi>g</mi><mi>h</mi><mo>,</mo><mi>h</mi><mo>,</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-CDF if and only if <span><math><mi>g</mi><mi>h</mi><mo>≡</mo><mi>h</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span>, <span><math><mi>g</mi><mo>⩾</mo><mn>4</mn></math></span> and <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>)</mo><mo>∉</mo><mo>{</mo><mo>(</mo><mn>9</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>)</mo><mo>}</mo></math></span>. As a corollary, it is shown that a 1-rotational Steiner system S<span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span> exists if and only if <span><math><mi>v</mi><mo>≡</mo><mn>4</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span> and <span><math><mi>v</mi><mo>≠</mo><mn>28</mn></math></span>. This solves the long-standing open problem on the existence of a 1-rotational S<span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span>. As another corollary, we establish the existence of an optimal <span><math><mo>(</mo><mi>v</mi><mo>,</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-optical orthogonal code with <span><math><mo>⌊</mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>12</mn><mo>⌋</mo></math></span> codewords for any positive integer <span><math><mi>v</mi><mo>≡</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span> and <span><math><mi>v</mi><mo>≠</mo><mn>25</mn></math></span>. We also give applications of our results to cyclic group divisible designs with block size four and optimal cyclic 3-ary constant-weight codes with weight four and minimum distance six.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105890"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000293","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a subgroup H of a group , a difference family (DF) is a set of k-subsets of G such that . Let be the subgroup of order h in generated by g. A -DF is called cyclic and written as a -CDF. This paper shows that for , there exists a -CDF if and only if , and . As a corollary, it is shown that a 1-rotational Steiner system S exists if and only if and . This solves the long-standing open problem on the existence of a 1-rotational S. As another corollary, we establish the existence of an optimal -optical orthogonal code with codewords for any positive integer and . We also give applications of our results to cyclic group divisible designs with block size four and optimal cyclic 3-ary constant-weight codes with weight four and minimum distance six.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.