Surface topography characterization of USMM during machining of zirconia ceramic using silicon carbide abrasives: An experimental and simulation approach
{"title":"Surface topography characterization of USMM during machining of zirconia ceramic using silicon carbide abrasives: An experimental and simulation approach","authors":"Bikash Banerjee , Subhadip Pradhan , Somnath Das , Debabrata Dhupal","doi":"10.1016/j.cirpj.2024.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>Zirconia is a highly biodegradable ceramic material with excellent fracture resistance, in biomedical engineering, particularly dental implants. This research work has been focused on optimizing the quality of micro-hole generation in zirconia ceramic through ultrasonic micromachining (USMM). Three key process parameters such as abrasive slurry concentration, tool feed rate, and power rating are considered in this research work. The material removal rate, overcut, and taper angle are considered as responses. Response surface methodology has been employed for modeling during the USMM process, and a mathematical model has been developed to understand material removal mechanisms. Finite element analysis has been utilized to provide insights into the impacting process for industry requirements. A 3D model has been created to perform dynamic analysis under practical conditions. Multi-objective optimization has been applied to achieve optimum material removal rate (MRR), overcut, and taper angle. From multi-objective optimization, a slurry concentration of 49.59% g/l, tool feed rate of 1.16 mm/min, and power rating of 386.87 W has been found and in this parameter settings maximum MRR of 0.5333 mm<sup>3</sup>/min, minimum taper angle of 0.3428 degrees, and minimum overcut of 36.64 µm has been obtained during machining of ZrO<sub>2</sub> ceramics.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"51 ","pages":"Pages 1-19"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724000385","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Zirconia is a highly biodegradable ceramic material with excellent fracture resistance, in biomedical engineering, particularly dental implants. This research work has been focused on optimizing the quality of micro-hole generation in zirconia ceramic through ultrasonic micromachining (USMM). Three key process parameters such as abrasive slurry concentration, tool feed rate, and power rating are considered in this research work. The material removal rate, overcut, and taper angle are considered as responses. Response surface methodology has been employed for modeling during the USMM process, and a mathematical model has been developed to understand material removal mechanisms. Finite element analysis has been utilized to provide insights into the impacting process for industry requirements. A 3D model has been created to perform dynamic analysis under practical conditions. Multi-objective optimization has been applied to achieve optimum material removal rate (MRR), overcut, and taper angle. From multi-objective optimization, a slurry concentration of 49.59% g/l, tool feed rate of 1.16 mm/min, and power rating of 386.87 W has been found and in this parameter settings maximum MRR of 0.5333 mm3/min, minimum taper angle of 0.3428 degrees, and minimum overcut of 36.64 µm has been obtained during machining of ZrO2 ceramics.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.