Alex R. Neale , Igor V. Sazanovich , Laurence J. Hardwick
{"title":"Gating-out emission for fluorescence-free Raman spectra for the study of electrode interfaces","authors":"Alex R. Neale , Igor V. Sazanovich , Laurence J. Hardwick","doi":"10.1016/j.coelec.2024.101480","DOIUrl":null,"url":null,"abstract":"<div><p>Kerr-gated Raman spectroscopy is a powerful technique that can suppress the fluorescence emission signals and reveal the otherwise hidden Raman scattering information within a variety of Li-ion battery materials. Herein, recent advances in the analysis of battery materials both <em>ex situ</em> and operando <em>via</em> Kerr-gated Raman spectroscopy are described and an outlook for broader application of the technique in the study of electrochemical systems is discussed.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324000413/pdfft?md5=2ee41d0e6a5db0554d5d73f07ed01ffd&pid=1-s2.0-S2451910324000413-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324000413","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kerr-gated Raman spectroscopy is a powerful technique that can suppress the fluorescence emission signals and reveal the otherwise hidden Raman scattering information within a variety of Li-ion battery materials. Herein, recent advances in the analysis of battery materials both ex situ and operando via Kerr-gated Raman spectroscopy are described and an outlook for broader application of the technique in the study of electrochemical systems is discussed.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •