{"title":"Artificial intelligence implementation in manufacturing SMEs: A resource orchestration approach","authors":"Einav Peretz-Andersson , Sabrina Tabares , Patrick Mikalef , Vinit Parida","doi":"10.1016/j.ijinfomgt.2024.102781","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence (AI) is playing a leading role in the digital transformation of enterprises, particularly in the manufacturing industry where it has been responsible for a profound transformation in key business and production operations. Despite the accelerated growth of AI technologies, knowledge of the implementation of AI by small and medium-sized enterprises (SMEs) remains underexplored. Thus, this study seeks to examine how manufacturing SMEs orchestrate resources for AI implementation. Building on the resource orchestration (RO) theory and recent work on AI implementation, we investigate multiple case studies involving manufacturing SMEs in Sweden operating in the packaging, plastic, and metal sectors. Our findings indicate that SMEs structure a portfolio based on acquiring and accumulating AI resources. AI resources are bundled into learning and governance capabilities to leverage configurations for AI implementation. Through a dynamic process of AI resource orchestration, SMEs effectively leverage AI resources and capabilities by mobilising technologies, coordinating manufacturing processes, and empowering skilled people. This research contributes to existing practice and the academic literature on AI implementation, highlighting how SMEs orchestrate AI resources and capabilities to drive an organisation’s digital transformation whilst creating a competitive advantage.</p></div>","PeriodicalId":48422,"journal":{"name":"International Journal of Information Management","volume":"77 ","pages":"Article 102781"},"PeriodicalIF":20.1000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S026840122400029X/pdfft?md5=45b8a98b95477191ee26e8b3376ee7ee&pid=1-s2.0-S026840122400029X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026840122400029X","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) is playing a leading role in the digital transformation of enterprises, particularly in the manufacturing industry where it has been responsible for a profound transformation in key business and production operations. Despite the accelerated growth of AI technologies, knowledge of the implementation of AI by small and medium-sized enterprises (SMEs) remains underexplored. Thus, this study seeks to examine how manufacturing SMEs orchestrate resources for AI implementation. Building on the resource orchestration (RO) theory and recent work on AI implementation, we investigate multiple case studies involving manufacturing SMEs in Sweden operating in the packaging, plastic, and metal sectors. Our findings indicate that SMEs structure a portfolio based on acquiring and accumulating AI resources. AI resources are bundled into learning and governance capabilities to leverage configurations for AI implementation. Through a dynamic process of AI resource orchestration, SMEs effectively leverage AI resources and capabilities by mobilising technologies, coordinating manufacturing processes, and empowering skilled people. This research contributes to existing practice and the academic literature on AI implementation, highlighting how SMEs orchestrate AI resources and capabilities to drive an organisation’s digital transformation whilst creating a competitive advantage.
期刊介绍:
The International Journal of Information Management (IJIM) is a distinguished, international, and peer-reviewed journal dedicated to providing its readers with top-notch analysis and discussions within the evolving field of information management. Key features of the journal include:
Comprehensive Coverage:
IJIM keeps readers informed with major papers, reports, and reviews.
Topical Relevance:
The journal remains current and relevant through Viewpoint articles and regular features like Research Notes, Case Studies, and a Reviews section, ensuring readers are updated on contemporary issues.
Focus on Quality:
IJIM prioritizes high-quality papers that address contemporary issues in information management.