High-speed impulsive stimulated Brillouin microscopy

IF 6.6 1区 物理与天体物理 Q1 OPTICS
Jiarui Li, Taoran Le, Hongyuan Zhang, Haoyun Wei, and Yan Li
{"title":"High-speed impulsive stimulated Brillouin microscopy","authors":"Jiarui Li, Taoran Le, Hongyuan Zhang, Haoyun Wei, and Yan Li","doi":"10.1364/prj.509922","DOIUrl":null,"url":null,"abstract":"Brillouin microscopy, which maps the elastic modulus from the frequency shift of scattered light, has evolved to a faster speed for the investigation of rapid biomechanical changes. Impulsive stimulated Brillouin scattering (ISBS) spectroscopy has the potential to speed up measurement through the resonant amplification interaction from pulsed excitation and time-domain continuous detection. However, significant progress has not been achieved due to the limitation in signal-to-noise ratio (SNR) and the corresponding need for excessive averaging to maintain high spectral precision. Moreover, the limited spatial resolution also hinders its application in mechanical imaging. Here, by scrutinizing the SNR model, we design a high-speed ISBS microscope through multi-parameter optimization including phase, reference power, and acquisition time. Leveraging this, with the further assistance of the Matrix Pencil method for data processing, three-dimensional mechanical images are mapped under multiple contrast mechanisms for a millimeter-scale polydimethylsiloxane pattern immersed in methanol, enabling the identification of these two transparent materials without any contact or labeling. Our experimental results demonstrate the capability to maintain high spectral precision and resolution at a sub-millisecond integration time for one pixel. With a two-order improvement in the speed and a tenfold improvement in the spatial resolution over the state-of-the-art systems, this method makes it possible for ISBS microscopes to sensitively investigate rapid mechanical changes in time and space.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"76 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.509922","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Brillouin microscopy, which maps the elastic modulus from the frequency shift of scattered light, has evolved to a faster speed for the investigation of rapid biomechanical changes. Impulsive stimulated Brillouin scattering (ISBS) spectroscopy has the potential to speed up measurement through the resonant amplification interaction from pulsed excitation and time-domain continuous detection. However, significant progress has not been achieved due to the limitation in signal-to-noise ratio (SNR) and the corresponding need for excessive averaging to maintain high spectral precision. Moreover, the limited spatial resolution also hinders its application in mechanical imaging. Here, by scrutinizing the SNR model, we design a high-speed ISBS microscope through multi-parameter optimization including phase, reference power, and acquisition time. Leveraging this, with the further assistance of the Matrix Pencil method for data processing, three-dimensional mechanical images are mapped under multiple contrast mechanisms for a millimeter-scale polydimethylsiloxane pattern immersed in methanol, enabling the identification of these two transparent materials without any contact or labeling. Our experimental results demonstrate the capability to maintain high spectral precision and resolution at a sub-millisecond integration time for one pixel. With a two-order improvement in the speed and a tenfold improvement in the spatial resolution over the state-of-the-art systems, this method makes it possible for ISBS microscopes to sensitively investigate rapid mechanical changes in time and space.
高速脉冲刺激布里渊显微镜
布里渊显微镜通过散射光的频移绘制弹性模量图,已发展到更快的速度,用于研究快速的生物力学变化。脉冲激发布里渊散射(ISBS)光谱法通过脉冲激发和时域连续检测的共振放大相互作用,有可能加快测量速度。然而,由于信噪比(SNR)的限制,以及为保持高光谱精度而需要过度平均的相应需求,该技术尚未取得重大进展。此外,有限的空间分辨率也阻碍了其在机械成像中的应用。在此,我们通过对信噪比模型的仔细研究,对相位、参考功率和采集时间等多参数进行优化,设计出一种高速 ISBS 显微镜。在此基础上,我们进一步利用矩阵铅笔方法进行数据处理,在多种对比机制下绘制出了浸入甲醇中的毫米级聚二甲基硅氧烷图案的三维机械图像,从而无需任何接触或标记即可识别这两种透明材料。我们的实验结果表明,在一个像素的亚毫秒积分时间内,能够保持较高的光谱精度和分辨率。与最先进的系统相比,这种方法的速度提高了两个等级,空间分辨率提高了十倍,使 ISBS 显微镜能够灵敏地研究时间和空间的快速机械变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.60
自引率
5.30%
发文量
1325
期刊介绍: Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信