Large-scale preparation of N-doped microporous-dominated carbon-based adsorbents for efficient removal of Chromium(VI): The synergistic effect of different nitrogen configurations
Qing Zhang , Tao Wang , Yujie He , Shengpeng Zuo , Zhongjing Zhao , Lu Zhang
{"title":"Large-scale preparation of N-doped microporous-dominated carbon-based adsorbents for efficient removal of Chromium(VI): The synergistic effect of different nitrogen configurations","authors":"Qing Zhang , Tao Wang , Yujie He , Shengpeng Zuo , Zhongjing Zhao , Lu Zhang","doi":"10.1016/j.clwat.2024.100013","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon-based adsorbents with abundant resources, environmental friendliness, and sufficient adsorption sites have broad application prospects for efficient removal of Chromium (Cr(VI)) in aquatic environment. Pursuing a heavy metal adsorption material and advancing it from the laboratory to the actual water environment are of great importance. Herein, we developed a general synthesis strategy for large-scale preparation of N-doped microporous-dominated carbon-based adsorbents (NC-s) via a direct pyrolysis process of ethylene diamine tetraacetic acid tetrasodium. The NC-s samples had abundant microporous, different nitrogen configurations and large specific surface area (503 m<sup>2</sup> g<sup>−1</sup>). Due to these advantages, the NC sample prepared at 800 °C (NC-800) possessed high adsorption capacity toward Cr(VI) (167.3 mg g<sup>−1</sup>) toward Cr(VI), fast adsorption process (180 min), and good reusability. Through specific experiments and density functional theory (DFT) calculations, we proposed that the adsorption mechanism of NC-s samples was primarily determined by the ion exchange/electrostatic attraction-reduction-complexation synergy, and the mechanism included adsorption-reduction of Cr(VI) and immobilization of Cr(III). Graphitic-N and pyridinic-N adsorbed Cr(VI) in solution mainly by electrostatic attraction, while pyrrolic-N mainly reduced the toxicity primarily by reducing Cr(VI) to Cr(III). These insights prove that the nitrogen-doped porous carbon-based adsorbents prepared in this study can effectively reduce Cr(VI) pollution in water environment.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100013"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000115/pdfft?md5=4832f3486e279ac84ed0f5efc402b522&pid=1-s2.0-S2950263224000115-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263224000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon-based adsorbents with abundant resources, environmental friendliness, and sufficient adsorption sites have broad application prospects for efficient removal of Chromium (Cr(VI)) in aquatic environment. Pursuing a heavy metal adsorption material and advancing it from the laboratory to the actual water environment are of great importance. Herein, we developed a general synthesis strategy for large-scale preparation of N-doped microporous-dominated carbon-based adsorbents (NC-s) via a direct pyrolysis process of ethylene diamine tetraacetic acid tetrasodium. The NC-s samples had abundant microporous, different nitrogen configurations and large specific surface area (503 m2 g−1). Due to these advantages, the NC sample prepared at 800 °C (NC-800) possessed high adsorption capacity toward Cr(VI) (167.3 mg g−1) toward Cr(VI), fast adsorption process (180 min), and good reusability. Through specific experiments and density functional theory (DFT) calculations, we proposed that the adsorption mechanism of NC-s samples was primarily determined by the ion exchange/electrostatic attraction-reduction-complexation synergy, and the mechanism included adsorption-reduction of Cr(VI) and immobilization of Cr(III). Graphitic-N and pyridinic-N adsorbed Cr(VI) in solution mainly by electrostatic attraction, while pyrrolic-N mainly reduced the toxicity primarily by reducing Cr(VI) to Cr(III). These insights prove that the nitrogen-doped porous carbon-based adsorbents prepared in this study can effectively reduce Cr(VI) pollution in water environment.