Yanlin Wang , Dongzhi Wang , Dongyan Zhang , Qiang Liu , Yongning Li
{"title":"Predicting carbon storage of mixed broadleaf forests based on the finite mixture model incorporating stand factors, site quality, and aridity index","authors":"Yanlin Wang , Dongzhi Wang , Dongyan Zhang , Qiang Liu , Yongning Li","doi":"10.1016/j.fecs.2024.100189","DOIUrl":null,"url":null,"abstract":"<div><p>The diameter distribution function (DDF) is a crucial tool for accurately predicting stand carbon storage (CS). The current key issue, however, is how to construct a high-precision DDF based on stand factors, site quality, and aridity index to predict stand CS in multi-species mixed forests with complex structures. This study used data from 70 survey plots for mixed broadleaf <em>Populus davidiana</em> and <em>Betula platyphylla</em> forests in the Mulan Rangeland State Forest, Hebei Province, China, to construct the DDF based on maximum likelihood estimation and finite mixture model (FMM). Ordinary least squares (OLS), linear seemingly unrelated regression (LSUR), and back propagation neural network (BPNN) were used to investigate the influences of stand factors, site quality, and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests. The results showed that FMM accurately described the stand-level diameter distribution of the mixed <em>P. davidiana</em> and <em>B. platyphylla</em> forests; whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution. The combined variable of quadratic mean diameter (<em>D</em><sub>q</sub>), stand basal area (BA), and site quality improved the accuracy of the shape parameter models of FMM; the combined variable of <em>D</em><sub>q</sub>, BA, and De Martonne aridity index improved the accuracy of the scale parameter models. Compared to OLS and LSUR, the BPNN had higher accuracy in the re-parameterization process of FMM. OLS, LSUR, and BPNN overestimated the CS of <em>P. davidiana</em> but underestimated the CS of <em>B. platyphylla</em> in the large diameter classes (DBH ≥18 cm). BPNN accurately estimated stand- and species-level CS, but it was more suitable for estimating stand-level CS compared to species-level CS, thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000253/pdfft?md5=7e93c7cb169563188fef334cd34424ca&pid=1-s2.0-S2197562024000253-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000253","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The diameter distribution function (DDF) is a crucial tool for accurately predicting stand carbon storage (CS). The current key issue, however, is how to construct a high-precision DDF based on stand factors, site quality, and aridity index to predict stand CS in multi-species mixed forests with complex structures. This study used data from 70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest, Hebei Province, China, to construct the DDF based on maximum likelihood estimation and finite mixture model (FMM). Ordinary least squares (OLS), linear seemingly unrelated regression (LSUR), and back propagation neural network (BPNN) were used to investigate the influences of stand factors, site quality, and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests. The results showed that FMM accurately described the stand-level diameter distribution of the mixed P. davidiana and B. platyphylla forests; whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution. The combined variable of quadratic mean diameter (Dq), stand basal area (BA), and site quality improved the accuracy of the shape parameter models of FMM; the combined variable of Dq, BA, and De Martonne aridity index improved the accuracy of the scale parameter models. Compared to OLS and LSUR, the BPNN had higher accuracy in the re-parameterization process of FMM. OLS, LSUR, and BPNN overestimated the CS of P. davidiana but underestimated the CS of B. platyphylla in the large diameter classes (DBH ≥18 cm). BPNN accurately estimated stand- and species-level CS, but it was more suitable for estimating stand-level CS compared to species-level CS, thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.