Operational performance evaluation of a container terminal using data mining and simulation

Tiago Novaes Mathias , Hideyo Inutsuka , Takeshi Shinoda , Yoshihisa Sugimura
{"title":"Operational performance evaluation of a container terminal using data mining and simulation","authors":"Tiago Novaes Mathias ,&nbsp;Hideyo Inutsuka ,&nbsp;Takeshi Shinoda ,&nbsp;Yoshihisa Sugimura","doi":"10.1016/j.eastsj.2024.100127","DOIUrl":null,"url":null,"abstract":"<div><p>The efficient operation of container terminals facilitates the seamless flow of goods across borders. New technologies such as big data, data mining, and simulation models, have emerged in the maritime industry, enabling optimization and performance evaluation. This study investigated how data science using operational data can improve container terminal operations, drive efficiency, enhance throughput, and bolster competitiveness in the shipping sector. Decision-making within container terminals, particularly in determining optimal container stacking locations, poses a significant challenge owing to the multitude of factors at play. By analyzing the datasets, new strategies and policies can be simulated to minimize container rehandling operations. This study focuses on the Hakata International Container Terminal in Japan, where daily operational data from rubber-tired gantry equipment are used to investigate container movements. A significant reduction in the total number of movements required to perform container-handling operations was demonstrated by implementing data-driven strategies and simulation modeling.</p></div>","PeriodicalId":100131,"journal":{"name":"Asian Transport Studies","volume":"10 ","pages":"Article 100127"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2185556024000051/pdfft?md5=f39e72ddbc2af3adcdb37bf7e94adda4&pid=1-s2.0-S2185556024000051-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Transport Studies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2185556024000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient operation of container terminals facilitates the seamless flow of goods across borders. New technologies such as big data, data mining, and simulation models, have emerged in the maritime industry, enabling optimization and performance evaluation. This study investigated how data science using operational data can improve container terminal operations, drive efficiency, enhance throughput, and bolster competitiveness in the shipping sector. Decision-making within container terminals, particularly in determining optimal container stacking locations, poses a significant challenge owing to the multitude of factors at play. By analyzing the datasets, new strategies and policies can be simulated to minimize container rehandling operations. This study focuses on the Hakata International Container Terminal in Japan, where daily operational data from rubber-tired gantry equipment are used to investigate container movements. A significant reduction in the total number of movements required to perform container-handling operations was demonstrated by implementing data-driven strategies and simulation modeling.

利用数据挖掘和模拟对集装箱码头的运营绩效进行评估
集装箱码头的高效运作有助于货物跨境无缝流动。海运业出现了大数据、数据挖掘和模拟模型等新技术,使优化和性能评估成为可能。本研究探讨了数据科学如何利用运营数据改善集装箱码头运营、提高效率、增加吞吐量并增强航运业的竞争力。集装箱码头内的决策制定,尤其是确定最佳集装箱堆放位置的决策制定,因涉及众多因素而面临巨大挑战。通过分析数据集,可以模拟出新的策略和政策,从而最大限度地减少集装箱重新装卸作业。本研究以日本博多国际集装箱码头为研究对象,利用橡胶龙门设备的每日运行数据来调查集装箱的移动情况。通过实施数据驱动策略和模拟建模,证明集装箱装卸作业所需的总移动次数大幅减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信