{"title":"Projections of tropical cyclones over the north Indian Ocean using different tracking schemes under CMIP5 models","authors":"Md Wahiduzzaman","doi":"10.1016/j.wace.2024.100664","DOIUrl":null,"url":null,"abstract":"<div><p>This research compares two different methods of tracing cyclones in the North Indian Ocean (NIO)- (i) Commonwealth Scientific and Industrial Research Organisation (CSIRO) Direct Detection (CDD) and Okubo-Weiss-Zeta parameter (OWZ) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) model data. Many CMIP5 models are evaluated against TC observations from the International Best Track Archive for Climate Stewardship (IBTrACS) and a statistical Generalised Additive Model for climate change projections in the past (1970–2000). Estimates of TCs' potential future occurrence in the NIO are evaluated using CMIP5 models (2070–2 100). When compared to historical tracks, the geographic distribution of TCs generated by both detection techniques is consistent with what would be expected, and the frequency of TCs in the models is, with a few exceptions, consistent with observations. Generally, the OWZ plan results in more TCs per unit time than the CDD scheme. Though there are significant differences between the two tracking techniques, a small number of models have TC counts that are virtually similar. Compared to the CDD plan, the OWZ scheme generally has higher performance in the NIO area.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"44 ","pages":"Article 100664"},"PeriodicalIF":6.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000252/pdfft?md5=6c6a31380bae3abe935d3f084b91859c&pid=1-s2.0-S2212094724000252-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094724000252","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This research compares two different methods of tracing cyclones in the North Indian Ocean (NIO)- (i) Commonwealth Scientific and Industrial Research Organisation (CSIRO) Direct Detection (CDD) and Okubo-Weiss-Zeta parameter (OWZ) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) model data. Many CMIP5 models are evaluated against TC observations from the International Best Track Archive for Climate Stewardship (IBTrACS) and a statistical Generalised Additive Model for climate change projections in the past (1970–2000). Estimates of TCs' potential future occurrence in the NIO are evaluated using CMIP5 models (2070–2 100). When compared to historical tracks, the geographic distribution of TCs generated by both detection techniques is consistent with what would be expected, and the frequency of TCs in the models is, with a few exceptions, consistent with observations. Generally, the OWZ plan results in more TCs per unit time than the CDD scheme. Though there are significant differences between the two tracking techniques, a small number of models have TC counts that are virtually similar. Compared to the CDD plan, the OWZ scheme generally has higher performance in the NIO area.
期刊介绍:
Weather and Climate Extremes
Target Audience:
Academics
Decision makers
International development agencies
Non-governmental organizations (NGOs)
Civil society
Focus Areas:
Research in weather and climate extremes
Monitoring and early warning systems
Assessment of vulnerability and impacts
Developing and implementing intervention policies
Effective risk management and adaptation practices
Engagement of local communities in adopting coping strategies
Information and communication strategies tailored to local and regional needs and circumstances