Neda Choodari Milani , Yahya Zamani , Sahar Baniyaghoob , Ali Nakhaei Pour
{"title":"Synergistic effect of Zr and K promoters on iron-based catalysts in CO hydrogenation reaction","authors":"Neda Choodari Milani , Yahya Zamani , Sahar Baniyaghoob , Ali Nakhaei Pour","doi":"10.1016/j.jscs.2024.101850","DOIUrl":null,"url":null,"abstract":"<div><p>There is a growing demand for decreasing fossil fuel usage. That being said, we should move toward renewable and sustainable energy sources. Iron-based catalysts are usually employed in this route. In this work, an incipient impregnation process was used for preparing four γ-Al<sub>2</sub>O<sub>3</sub> supported iron-based catalysts with different weight percents including 20Fe/5Cu/γ-Al<sub>2</sub>O<sub>3</sub>, 20Fe/5Cu/2K/γ-Al<sub>2</sub>O<sub>3</sub>, 20Fe/5Cu/3Zr/γ-Al<sub>2</sub>O<sub>3</sub> and 20Fe/5Cu/1.5Zr/1K/γ-Al<sub>2</sub>O<sub>3</sub> under the pressure of 20 atm, the temperature of 285 °C, H<sub>2</sub> to CO ratio of one, and a gas hourly space velocity of 2 NL/ (h. gCat). BET, FE-SEM, XRD, H<sub>2</sub>-TPR, ICP, and TEM techniques were used to determine the characteristics of the catalysts, while gas chromatography results were used to determine CO conversion and product selectivity. Due to the synergistic effect of the two promoters, the doubly-promoted catalyst exhibited a C<sub>5</sub><sup>+</sup> selectivity of 64.2 %, surpassing both the Fe/Cu/γ-Al<sub>2</sub>O<sub>3</sub> catalyst and the singly-promoted catalysts. This result highlights the enhanced performance of the doubly-promoted catalyst. Compared to the other catalysts prepared, the doubly-promoted catalyst demonstrated a higher carbon monoxide (CO) conversion rate of 67.7 % and yield of 43.5 %. Moreover, The results demonstrate the significant impact of Zr and K promoters of the synthesized Fe-based catalysts on hydrocarbon product distribution.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101850"},"PeriodicalIF":5.8000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000450/pdfft?md5=0e00710fffe7fbadcb7e351419277608&pid=1-s2.0-S1319610324000450-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324000450","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a growing demand for decreasing fossil fuel usage. That being said, we should move toward renewable and sustainable energy sources. Iron-based catalysts are usually employed in this route. In this work, an incipient impregnation process was used for preparing four γ-Al2O3 supported iron-based catalysts with different weight percents including 20Fe/5Cu/γ-Al2O3, 20Fe/5Cu/2K/γ-Al2O3, 20Fe/5Cu/3Zr/γ-Al2O3 and 20Fe/5Cu/1.5Zr/1K/γ-Al2O3 under the pressure of 20 atm, the temperature of 285 °C, H2 to CO ratio of one, and a gas hourly space velocity of 2 NL/ (h. gCat). BET, FE-SEM, XRD, H2-TPR, ICP, and TEM techniques were used to determine the characteristics of the catalysts, while gas chromatography results were used to determine CO conversion and product selectivity. Due to the synergistic effect of the two promoters, the doubly-promoted catalyst exhibited a C5+ selectivity of 64.2 %, surpassing both the Fe/Cu/γ-Al2O3 catalyst and the singly-promoted catalysts. This result highlights the enhanced performance of the doubly-promoted catalyst. Compared to the other catalysts prepared, the doubly-promoted catalyst demonstrated a higher carbon monoxide (CO) conversion rate of 67.7 % and yield of 43.5 %. Moreover, The results demonstrate the significant impact of Zr and K promoters of the synthesized Fe-based catalysts on hydrocarbon product distribution.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.