Inhibition of DAPK3 Suppresses Radiation-Induced Cellular Senescence by Activation of a PGC1α-Dependent Metabolism Pathway in Brain Endothelial Cells.

Ji-Eun Park, Jeong Woo Park, Myong-Kyu Sim, So Ra Kim, Kwang Seok Kim
{"title":"Inhibition of DAPK3 Suppresses Radiation-Induced Cellular Senescence by Activation of a PGC1α-Dependent Metabolism Pathway in Brain Endothelial Cells.","authors":"Ji-Eun Park, Jeong Woo Park, Myong-Kyu Sim, So Ra Kim, Kwang Seok Kim","doi":"10.1093/gerona/glae088","DOIUrl":null,"url":null,"abstract":"<p><p>In the brain, environmental changes, such as neuroinflammation, can induce senescence, characterized by the decreased proliferation of neurons and dendrites and synaptic and vascular damage, resulting in cognitive decline. Senescence promotes neuroinflammatory disorders by senescence-associated secretory phenotypes and reactive oxygen species. In human brain microvascular endothelial cells (HBMVECs), we demonstrate that chronological aging and irradiation increase death-associated protein kinase 3 (DAPK3) expression. To confirm the role of DAPK3 in HBMVEC senescence, we disrupted DAPK3 activity using small interfering RNA (siRNA) or a dominant-negative mutant (DAPK3-P216S), which reduced cellular senescence phenotypes, as assessed by changes in tube formation, senescence-associated beta-galactosidase activity, and cell proliferation. In endothelial cells, DAPK3 promotes cellular senescence by regulating the phosphorylation and inactivation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) via the protein kinase B pathway, resulting in the decreased expression of mitochondrial metabolism-associated genes, such as ATP5G1, BDNF, and COX5A. Our studies show that DAPK3 is involved in cellular senescence and PGC1α regulation, suggesting that DAPK3 regulation may be important for treating aging-related brain diseases or the response to radiation therapy.</p>","PeriodicalId":94243,"journal":{"name":"The journals of gerontology. Series A, Biological sciences and medical sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journals of gerontology. Series A, Biological sciences and medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glae088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the brain, environmental changes, such as neuroinflammation, can induce senescence, characterized by the decreased proliferation of neurons and dendrites and synaptic and vascular damage, resulting in cognitive decline. Senescence promotes neuroinflammatory disorders by senescence-associated secretory phenotypes and reactive oxygen species. In human brain microvascular endothelial cells (HBMVECs), we demonstrate that chronological aging and irradiation increase death-associated protein kinase 3 (DAPK3) expression. To confirm the role of DAPK3 in HBMVEC senescence, we disrupted DAPK3 activity using small interfering RNA (siRNA) or a dominant-negative mutant (DAPK3-P216S), which reduced cellular senescence phenotypes, as assessed by changes in tube formation, senescence-associated beta-galactosidase activity, and cell proliferation. In endothelial cells, DAPK3 promotes cellular senescence by regulating the phosphorylation and inactivation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) via the protein kinase B pathway, resulting in the decreased expression of mitochondrial metabolism-associated genes, such as ATP5G1, BDNF, and COX5A. Our studies show that DAPK3 is involved in cellular senescence and PGC1α regulation, suggesting that DAPK3 regulation may be important for treating aging-related brain diseases or the response to radiation therapy.

通过激活脑内皮细胞中 PGC1α 依赖性代谢途径,抑制 DAPK3 可抑制辐射诱导的细胞衰老。
在大脑中,神经炎症等环境变化会诱发衰老,衰老的特征是神经元和树突的增殖减少以及突触和血管损伤,从而导致认知能力下降。衰老通过与衰老相关的分泌表型和 ROS 促进神经炎症。在人脑微血管内皮细胞(HBMVECs)中,我们证明了慢性衰老和辐照会增加死亡相关蛋白激酶 3(DAPK3)的表达。为了证实 DAPK3 在 HBMVEC 衰老中的作用,我们使用小干扰 RNA(siRNA)或显性阴性突变体(DAPK3-P216S)破坏了 DAPK3 的活性,从而减少了细胞衰老表型,具体表现为管形成、衰老相关的 beta-半乳糖苷酶活性和细胞增殖的变化。在内皮细胞中,DAPK3通过蛋白激酶B途径调节过氧化物酶体增殖激活受体γ辅助激活剂1α(PGC1α)的磷酸化和失活,从而促进细胞衰老,导致线粒体代谢相关基因(如ATP5G1、BDNF和COX5A)的表达减少。我们的研究表明,DAPK3 参与了细胞衰老和 PGC1α 的调控,这表明 DAPK3 的调控可能对治疗与衰老相关的脑部疾病或放疗反应具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信