Exploring the viability of Zeatin as a prospective therapeutic candidate for investigating the complex interplay between severe acute respiratory syndrome coronavirus (SARS-CoV) and Alzheimer's disease.
{"title":"Exploring the viability of Zeatin as a prospective therapeutic candidate for investigating the complex interplay between severe acute respiratory syndrome coronavirus (SARS-CoV) and Alzheimer's disease.","authors":"A S Sriranjini, Ashish Thapliyal, Kumud Pant","doi":"10.1007/s40203-024-00195-3","DOIUrl":null,"url":null,"abstract":"<p><p>The present research aims to explore the intricate link between SARS-CoV infection and susceptibility to Alzheimer's disease, focusing on the role of APOE4, a genetic factor associated with both conditions. Our research aims to uncover shared molecular pathways, considering APOE4's impact on lipid metabolism, immune responses, and neuroinflammation relevant to COVID-19 and AD. The Chyawanprash phytocompounds were subjected to in-silico ADMET profiling and Zeatin a neuroprotective cytokinin emerged as a promising regulator of the ACE2-SPIKE complex as it exhibits favourable pharmacological attributes, presenting as a non-substrate for Permeability glycoprotein, low Protein Binding Percentage, and distinctive toxicity endpoints. Therapeutic candidate. Zeatin's robust binding disrupts the intricate APOE4-ACE2-SPIKE interplay (AAS), offering a potential therapeutic avenue that is further corroborated by Molecular dynamic simulation as the system remained stable without any major fluctuation throughout the 100ns simulation. The AAS binding free energy, determined as -124.849 +/- 15.513 KJ/mol using MMPBSA assay, reveals significant contributions to complex stability from amino acids including, GLN41: 1.211 kcal/mol, GLU340: 1.188 kcal/mol, ALA344: 1.198 kcal/mol, while ARG38: 2.011 kcal/mol establishes pivotal strong bonds integral to the interaction between AAS and Zeatin. Rigorous cytotoxicity assessments reveal Zeatin's safety profile, highlighting its inhibitory effect on LN18 cell viability that sharply decreases to 32.47% at 200 µg/ml, underscoring its modulatory impact on cellular metabolism. These findings enhance our understanding of the convergent mechanisms linking SARS-CoV and AD, providing valuable insights for potential therapeutic interventions. Further research is warranted to elucidate the specific pathways and molecular mechanisms through which zeatin exerts its protective effects.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 1","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973747/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00195-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present research aims to explore the intricate link between SARS-CoV infection and susceptibility to Alzheimer's disease, focusing on the role of APOE4, a genetic factor associated with both conditions. Our research aims to uncover shared molecular pathways, considering APOE4's impact on lipid metabolism, immune responses, and neuroinflammation relevant to COVID-19 and AD. The Chyawanprash phytocompounds were subjected to in-silico ADMET profiling and Zeatin a neuroprotective cytokinin emerged as a promising regulator of the ACE2-SPIKE complex as it exhibits favourable pharmacological attributes, presenting as a non-substrate for Permeability glycoprotein, low Protein Binding Percentage, and distinctive toxicity endpoints. Therapeutic candidate. Zeatin's robust binding disrupts the intricate APOE4-ACE2-SPIKE interplay (AAS), offering a potential therapeutic avenue that is further corroborated by Molecular dynamic simulation as the system remained stable without any major fluctuation throughout the 100ns simulation. The AAS binding free energy, determined as -124.849 +/- 15.513 KJ/mol using MMPBSA assay, reveals significant contributions to complex stability from amino acids including, GLN41: 1.211 kcal/mol, GLU340: 1.188 kcal/mol, ALA344: 1.198 kcal/mol, while ARG38: 2.011 kcal/mol establishes pivotal strong bonds integral to the interaction between AAS and Zeatin. Rigorous cytotoxicity assessments reveal Zeatin's safety profile, highlighting its inhibitory effect on LN18 cell viability that sharply decreases to 32.47% at 200 µg/ml, underscoring its modulatory impact on cellular metabolism. These findings enhance our understanding of the convergent mechanisms linking SARS-CoV and AD, providing valuable insights for potential therapeutic interventions. Further research is warranted to elucidate the specific pathways and molecular mechanisms through which zeatin exerts its protective effects.