Comprehensive analysis of the CRISPR-Cas systems in Streptococcus thermophilus strains isolated from traditional yogurts.

IF 1.8 3区 生物学 Q4 MICROBIOLOGY
Ali Özcan, Artun Yıbar, Deniz Kiraz, Özge Kahraman Ilıkkan
{"title":"Comprehensive analysis of the CRISPR-Cas systems in Streptococcus thermophilus strains isolated from traditional yogurts.","authors":"Ali Özcan, Artun Yıbar, Deniz Kiraz, Özge Kahraman Ilıkkan","doi":"10.1007/s10482-024-01960-2","DOIUrl":null,"url":null,"abstract":"<p><p>Phage resistance is crucial for lactic acid bacteria in the dairy industry. However, identifying all phages affecting these bacteria is challenging. CRISPR-Cas systems offer a resistance mechanism developed by bacteria and archaea against phages and plasmids. In this study, 11 S. thermophilus strains from traditional yogurts underwent analysis using next-generation sequencing (NGS) and bioinformatics tools. Initial characterization involved molecular ribotyping. Bioinformatics analysis of the NGS raw data revealed that all 11 strains possessed at least one CRISPR type. A total of 21 CRISPR loci were identified, belonging to CRISPR types II-A, II-C, and III-A, including 13 Type II-A, 1 Type III-C, and 7 Type III-A CRISPR types. By analyzing spacer sequences in S. thermophilus bacterial genomes and matching them with phage/plasmid genomes, notable strains emerged. SY9 showed prominence with 132 phage matches and 30 plasmid matches, followed by SY12 with 35 phage matches and 25 plasmid matches, and SY18 with 49 phage matches and 13 plasmid matches. These findings indicate the potential of S. thermophilus strains in phage/plasmid resistance for selecting starter cultures, ultimately improving the quality and quantity of dairy products. Nevertheless, further research is required to validate these results and explore the practical applications of this approach.</p>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":"63"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10482-024-01960-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phage resistance is crucial for lactic acid bacteria in the dairy industry. However, identifying all phages affecting these bacteria is challenging. CRISPR-Cas systems offer a resistance mechanism developed by bacteria and archaea against phages and plasmids. In this study, 11 S. thermophilus strains from traditional yogurts underwent analysis using next-generation sequencing (NGS) and bioinformatics tools. Initial characterization involved molecular ribotyping. Bioinformatics analysis of the NGS raw data revealed that all 11 strains possessed at least one CRISPR type. A total of 21 CRISPR loci were identified, belonging to CRISPR types II-A, II-C, and III-A, including 13 Type II-A, 1 Type III-C, and 7 Type III-A CRISPR types. By analyzing spacer sequences in S. thermophilus bacterial genomes and matching them with phage/plasmid genomes, notable strains emerged. SY9 showed prominence with 132 phage matches and 30 plasmid matches, followed by SY12 with 35 phage matches and 25 plasmid matches, and SY18 with 49 phage matches and 13 plasmid matches. These findings indicate the potential of S. thermophilus strains in phage/plasmid resistance for selecting starter cultures, ultimately improving the quality and quantity of dairy products. Nevertheless, further research is required to validate these results and explore the practical applications of this approach.

全面分析从传统酸奶中分离出的嗜热链球菌菌株中的 CRISPR-Cas 系统。
噬菌体抗性对乳制品工业中的乳酸菌至关重要。然而,鉴定影响这些细菌的所有噬菌体具有挑战性。CRISPR-Cas 系统为细菌和古细菌提供了一种抵抗噬菌体和质粒的机制。在这项研究中,使用新一代测序(NGS)和生物信息学工具对来自传统酸奶的 11 株嗜热菌进行了分析。初步特征描述包括分子核糖体分型。对 NGS 原始数据的生物信息学分析表明,所有 11 株菌株都至少具有一种 CRISPR 类型。共鉴定出 21 个 CRISPR 位点,属于 CRISPR 类型 II-A、II-C 和 III-A,其中包括 13 个 II-A 型、1 个 III-C 型和 7 个 III-A 型 CRISPR 类型。通过分析嗜热杆菌细菌基因组中的间隔序列并将其与噬菌体/质粒基因组进行比对,发现了一些值得注意的菌株。SY9表现突出,有132个噬菌体匹配和30个质粒匹配;其次是SY12,有35个噬菌体匹配和25个质粒匹配;SY18有49个噬菌体匹配和13个质粒匹配。这些发现表明,嗜热菌菌株在噬菌体/质粒抗性方面具有潜力,可用于选择启动培养物,最终提高乳制品的质量和数量。然而,要验证这些结果并探索这种方法的实际应用,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
11.50%
发文量
104
审稿时长
3 months
期刊介绍: Antonie van Leeuwenhoek publishes papers on fundamental and applied aspects of microbiology. Topics of particular interest include: taxonomy, structure & development; biochemistry & molecular biology; physiology & metabolic studies; genetics; ecological studies; especially molecular ecology; marine microbiology; medical microbiology; molecular biological aspects of microbial pathogenesis and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信