DNA Methylation in the Adaptive Response to Exercise.

IF 9.3 1区 医学 Q1 SPORT SCIENCES
Sports Medicine Pub Date : 2024-06-01 Epub Date: 2024-04-02 DOI:10.1007/s40279-024-02011-6
Adam J Bittel, Yi-Wen Chen
{"title":"DNA Methylation in the Adaptive Response to Exercise.","authors":"Adam J Bittel, Yi-Wen Chen","doi":"10.1007/s40279-024-02011-6","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging evidence published over the past decade has highlighted the role of DNA methylation in skeletal muscle function and health, including as an epigenetic transducer of the adaptive response to exercise. In this review, we aim to synthesize the latest findings in this field to highlight: (1) the shifting understanding of the genomic localization of altered DNA methylation in response to acute and chronic aerobic and resistance exercise in skeletal muscle (e.g., promoter, gene bodies, enhancers, intergenic regions, un-annotated regions, and genome-wide methylation); (2) how these global/regional methylation changes relate to transcriptional activity following exercise; and (3) the factors (e.g., individual demographic or genetic features, dietary, training history, exercise parameters, local epigenetic characteristics, circulating hormones) demonstrated to alter both the pattern of DNA methylation after exercise, and the relationship between DNA methylation and gene expression. Finally, we discuss the changes in non-CpG methylation and 5-hydroxymethylation after exercise, as well as the importance of emerging single-cell analyses to future studies-areas of increasing focus in the field of epigenetics. We anticipate that this review will help generate a framework for clinicians and researchers to begin developing and testing exercise interventions designed to generate targeted changes in DNA methylation as part of a personalized exercise regimen.</p>","PeriodicalId":21969,"journal":{"name":"Sports Medicine","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40279-024-02011-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging evidence published over the past decade has highlighted the role of DNA methylation in skeletal muscle function and health, including as an epigenetic transducer of the adaptive response to exercise. In this review, we aim to synthesize the latest findings in this field to highlight: (1) the shifting understanding of the genomic localization of altered DNA methylation in response to acute and chronic aerobic and resistance exercise in skeletal muscle (e.g., promoter, gene bodies, enhancers, intergenic regions, un-annotated regions, and genome-wide methylation); (2) how these global/regional methylation changes relate to transcriptional activity following exercise; and (3) the factors (e.g., individual demographic or genetic features, dietary, training history, exercise parameters, local epigenetic characteristics, circulating hormones) demonstrated to alter both the pattern of DNA methylation after exercise, and the relationship between DNA methylation and gene expression. Finally, we discuss the changes in non-CpG methylation and 5-hydroxymethylation after exercise, as well as the importance of emerging single-cell analyses to future studies-areas of increasing focus in the field of epigenetics. We anticipate that this review will help generate a framework for clinicians and researchers to begin developing and testing exercise interventions designed to generate targeted changes in DNA methylation as part of a personalized exercise regimen.

运动适应性反应中的 DNA 甲基化。
过去十年发表的新证据强调了 DNA 甲基化在骨骼肌功能和健康中的作用,包括作为运动适应性反应的表观遗传转换器。在这篇综述中,我们旨在综合这一领域的最新研究成果,以突出强调:(1) 对骨骼肌急慢性有氧运动和阻力运动时 DNA 甲基化改变的基因组定位(如启动子、基因体、增强子、基因间区、未注释区和全基因组甲基化)的认识的转变;(2) 这些全局/区域甲基化变化与运动后转录活动的关系;(3) 各种因素(如个人人口或遗传特征、饮食、运动后转录活动等)的影响、个人人口学或遗传学特征、饮食、训练史、运动参数、局部表观遗传学特征、循环激素)被证明会改变运动后 DNA 甲基化的模式,以及 DNA 甲基化与基因表达之间的关系。最后,我们讨论了运动后非 CpG 甲基化和 5-羟甲基化的变化,以及新出现的单细胞分析对未来研究的重要性--这些都是表观遗传学领域日益关注的领域。我们预计,本综述将有助于为临床医生和研究人员提供一个框架,以开始开发和测试旨在产生 DNA 甲基化目标变化的运动干预措施,作为个性化运动方案的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sports Medicine
Sports Medicine 医学-运动科学
CiteScore
18.40
自引率
5.10%
发文量
165
审稿时长
6-12 weeks
期刊介绍: Sports Medicine focuses on providing definitive and comprehensive review articles that interpret and evaluate current literature, aiming to offer insights into research findings in the sports medicine and exercise field. The journal covers major topics such as sports medicine and sports science, medical syndromes associated with sport and exercise, clinical medicine's role in injury prevention and treatment, exercise for rehabilitation and health, and the application of physiological and biomechanical principles to specific sports. Types of Articles: Review Articles: Definitive and comprehensive reviews that interpret and evaluate current literature to provide rationale for and application of research findings. Leading/Current Opinion Articles: Overviews of contentious or emerging issues in the field. Original Research Articles: High-quality research articles. Enhanced Features: Additional features like slide sets, videos, and animations aimed at increasing the visibility, readership, and educational value of the journal's content. Plain Language Summaries: Summaries accompanying articles to assist readers in understanding important medical advances. Peer Review Process: All manuscripts undergo peer review by international experts to ensure quality and rigor. The journal also welcomes Letters to the Editor, which will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信