Anne Goelzer , Loïc Rajjou , Fabien Chardon , Olivier Loudet , Vincent Fromion
{"title":"Resource allocation modeling for autonomous prediction of plant cell phenotypes","authors":"Anne Goelzer , Loïc Rajjou , Fabien Chardon , Olivier Loudet , Vincent Fromion","doi":"10.1016/j.ymben.2024.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of <em>Arabidopsis thaliana</em>, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments. We simulated the model for varying environmental conditions of temperature, irradiance, partial pressure of CO<sub>2</sub> and O<sub>2</sub>, and compared RBA predictions to known resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N ratio, and finally to the empirical characteristics of CO<sub>2</sub> fixation given by the well-established Farquhar model. In comparison to other standard constraint-based modeling methods like Flux Balance Analysis, the RBA model makes accurate quantitative predictions without the need for empirical constraints. Altogether, we show that RBA significantly improves the autonomous prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic links between the genotype and the phenotype of the plant cell.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000545","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments. We simulated the model for varying environmental conditions of temperature, irradiance, partial pressure of CO2 and O2, and compared RBA predictions to known resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N ratio, and finally to the empirical characteristics of CO2 fixation given by the well-established Farquhar model. In comparison to other standard constraint-based modeling methods like Flux Balance Analysis, the RBA model makes accurate quantitative predictions without the need for empirical constraints. Altogether, we show that RBA significantly improves the autonomous prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic links between the genotype and the phenotype of the plant cell.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.