Analysis of carbon nanotube levels in organic matter: an inter-laboratory comparison to determine best practice.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY
Nanotoxicology Pub Date : 2024-03-01 Epub Date: 2024-04-01 DOI:10.1080/17435390.2024.2331683
Jérôme Devoy, Souhail Al-Abed, Benjamin Cerdan, Wan-Seob Cho, David Dubuc, Emmanuel Flahaut, Katia Grenier, Stéphane Grossmann, Mary Gulumian, Jiyoung Jeong, Boo Wook Kim, Adam Laycock, Jong Seong Lee, Rachel Smith, Mei Yang, Il Je Yu, Minfang Zhang, Frédéric Cosnier
{"title":"Analysis of carbon nanotube levels in organic matter: an inter-laboratory comparison to determine best practice.","authors":"Jérôme Devoy, Souhail Al-Abed, Benjamin Cerdan, Wan-Seob Cho, David Dubuc, Emmanuel Flahaut, Katia Grenier, Stéphane Grossmann, Mary Gulumian, Jiyoung Jeong, Boo Wook Kim, Adam Laycock, Jong Seong Lee, Rachel Smith, Mei Yang, Il Je Yu, Minfang Zhang, Frédéric Cosnier","doi":"10.1080/17435390.2024.2331683","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter. Among existing analytical methods, few have been fully and properly validated. To remedy this, we undertook an inter-laboratory comparison on samples of freeze-dried pig lung, ground and doped with CNTs. Eight laboratories were enrolled to analyze 3 types of CNTs at 2 concentration levels each in this organic matrix. Associated with the different analysis techniques used (specific to each laboratory), sample preparation may or may not have involved prior digestion of the matrix, depending on the analysis technique and the material being analyzed. Overall, even challenging, laboratories' ability to quantify CNT levels in organic matter is demonstrated. However, CNT quantification is often overestimated. Trueness analysis identified effective methods, but systematic errors persisted for some. Choosing the assigned value proved complex. Indirect analysis methods, despite added steps, outperform direct methods. The study emphasizes the need for reference materials, enhanced precision, and organized comparisons.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"214-228"},"PeriodicalIF":3.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2331683","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter. Among existing analytical methods, few have been fully and properly validated. To remedy this, we undertook an inter-laboratory comparison on samples of freeze-dried pig lung, ground and doped with CNTs. Eight laboratories were enrolled to analyze 3 types of CNTs at 2 concentration levels each in this organic matrix. Associated with the different analysis techniques used (specific to each laboratory), sample preparation may or may not have involved prior digestion of the matrix, depending on the analysis technique and the material being analyzed. Overall, even challenging, laboratories' ability to quantify CNT levels in organic matter is demonstrated. However, CNT quantification is often overestimated. Trueness analysis identified effective methods, but systematic errors persisted for some. Choosing the assigned value proved complex. Indirect analysis methods, despite added steps, outperform direct methods. The study emphasizes the need for reference materials, enhanced precision, and organized comparisons.

有机物质中碳纳米管含量的分析:确定最佳做法的实验室间比较。
碳纳米管(CNTs)越来越多地应用于工业领域,但其在动物和人体中的毒理学数据仍然很少。要评估 CNT 的毒理学剂量反应并评价其在肺部的生物持久性,对其在组织(尤其是肺部)中的定量至关重要。目前还没有针对有机物中低浓度 CNT 的参考方法或参考材料。在现有的分析方法中,很少有经过充分和适当验证的方法。为了解决这一问题,我们对冻干的猪肺、磨碎的猪肺和掺杂了碳纳米管的猪肺样本进行了实验室间比较。八家实验室参加了此次比对,对有机基质中两种浓度水平的 3 种类型的碳纳米管进行了分析。由于采用了不同的分析技术(每个实验室都有自己的特点),样品制备可能需要或不需要事先消化基质,具体取决于分析技术和所分析的材料。总体而言,即使具有挑战性,实验室也有能力对有机物质中的 CNT 含量进行量化。不过,CNT 定量往往被高估。真实性分析确定了有效的方法,但有些方法仍然存在系统误差。事实证明,选择指定值非常复杂。尽管增加了步骤,但间接分析方法优于直接分析方法。该研究强调了参考材料、提高精确度和组织比较的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信