Deepa Paliwal, Mojgan Rabiey, Tim H. Mauchline, Keywan Hassani-Pak, Ralf Nauen, Carol Wagstaff, Simon Andrews, Chris Bass, Robert W. Jackson
{"title":"Multiple toxins and a protease contribute to the aphid-killing ability of Pseudomonas fluorescens PpR24","authors":"Deepa Paliwal, Mojgan Rabiey, Tim H. Mauchline, Keywan Hassani-Pak, Ralf Nauen, Carol Wagstaff, Simon Andrews, Chris Bass, Robert W. Jackson","doi":"10.1111/1462-2920.16604","DOIUrl":null,"url":null,"abstract":"<p>Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found <i>Pseudomonas fluorescens</i> PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (<i>Myzus persicae</i>). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host–pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16604","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16604","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host–pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens