Uppermost global tree elevations are primarily limited by low temperature or insufficient moisture

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Yuyang Xie, Zehao Shen, Tao Wang, George P. Malanson, Josep Peñuelas, Xiaoyi Wang, Xiangwu Chen, Eryuan Liang, Hongyan Liu, Mingzheng Yang, Lingxiao Ying, Fu Zhao, Shilong Piao
{"title":"Uppermost global tree elevations are primarily limited by low temperature or insufficient moisture","authors":"Yuyang Xie,&nbsp;Zehao Shen,&nbsp;Tao Wang,&nbsp;George P. Malanson,&nbsp;Josep Peñuelas,&nbsp;Xiaoyi Wang,&nbsp;Xiangwu Chen,&nbsp;Eryuan Liang,&nbsp;Hongyan Liu,&nbsp;Mingzheng Yang,&nbsp;Lingxiao Ying,&nbsp;Fu Zhao,&nbsp;Shilong Piao","doi":"10.1111/gcb.17260","DOIUrl":null,"url":null,"abstract":"<p>The impact of anthropogenic global warming has induced significant upward dispersal of trees to higher elevations at alpine treelines. Assessing vertical deviation from current uppermost tree distributions to potential treeline positions is crucial for understanding ecosystem responses to evolving global climate. However, due to data resolution constraints and research scale limitation, comprehending the global pattern of alpine treeline elevations and driving factors remains challenging. This study constructed a comprehensive quasi-observational dataset of uppermost tree distribution across global mountains using Google Earth imagery. Validating the isotherm of mean growing-season air temperature at 6.6 ± 0.3°C as the global indicator of thermal treeline, we found that around two-thirds of uppermost tree distribution records significantly deviated from it. Drought conditions constitute the primary driver in 51% of cases, followed by mountain elevation effect which indicates surface heat (27%). Our analyses underscore the multifaceted determinants of global patterns of alpine treeline, explaining divergent treeline responses to climate warming. Moisture, along with temperature and disturbance, plays the most fundamental roles in understanding global variation of alpine treeline elevation and forecasting alpine treeline response to ongoing global warming.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 4","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17260","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of anthropogenic global warming has induced significant upward dispersal of trees to higher elevations at alpine treelines. Assessing vertical deviation from current uppermost tree distributions to potential treeline positions is crucial for understanding ecosystem responses to evolving global climate. However, due to data resolution constraints and research scale limitation, comprehending the global pattern of alpine treeline elevations and driving factors remains challenging. This study constructed a comprehensive quasi-observational dataset of uppermost tree distribution across global mountains using Google Earth imagery. Validating the isotherm of mean growing-season air temperature at 6.6 ± 0.3°C as the global indicator of thermal treeline, we found that around two-thirds of uppermost tree distribution records significantly deviated from it. Drought conditions constitute the primary driver in 51% of cases, followed by mountain elevation effect which indicates surface heat (27%). Our analyses underscore the multifaceted determinants of global patterns of alpine treeline, explaining divergent treeline responses to climate warming. Moisture, along with temperature and disturbance, plays the most fundamental roles in understanding global variation of alpine treeline elevation and forecasting alpine treeline response to ongoing global warming.

Abstract Image

全球树木的最高海拔主要受到低温或水分不足的限制。
全球人为变暖的影响导致高山树线上的树木大量向高海拔地区扩散。评估从目前树木分布的最上层到潜在树线位置的垂直偏差,对于了解生态系统对不断变化的全球气候的反应至关重要。然而,由于数据分辨率的限制和研究规模的局限,理解全球高山林木线海拔模式和驱动因素仍然具有挑战性。本研究利用谷歌地球图像构建了一个全面的准观测数据集,以了解全球山脉最上层树木的分布情况。我们验证了将生长季平均气温等温线(6.6 ± 0.3°C)作为全球热树线指标的有效性,并发现约三分之二的最上部树木分布记录明显偏离了等温线。在 51% 的案例中,干旱条件是主要驱动因素,其次是表明地表热量的高山海拔效应(27%)。我们的分析强调了全球高山树线模式的多方面决定因素,解释了树线对气候变暖的不同反应。在理解高山林木线海拔的全球变化和预测高山林木线对持续全球变暖的反应方面,水分与温度和干扰一起发挥着最基本的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信