{"title":"Bounding clique size in squares of planar graphs","authors":"Daniel W. Cranston","doi":"10.1016/j.ejc.2024.103960","DOIUrl":null,"url":null,"abstract":"<div><p>Wegner conjectured that if <span><math><mi>G</mi></math></span> is a planar graph with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>8</mn></mrow></math></span>, then <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>≤</mo><mfenced><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>Δ</mi></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>. This problem has received much attention, but remains open for all <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>8</mn></mrow></math></span>. Here we prove an analogous bound on <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>: If <span><math><mi>G</mi></math></span> is a plane graph with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>36</mn></mrow></math></span>, then <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>. In fact, this is a corollary of the following lemma, which is our main result. If <span><math><mi>G</mi></math></span> is a plane graph with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>19</mn></mrow></math></span> and <span><math><mi>S</mi></math></span> is a maximal clique in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>≥</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>20</mn></mrow></math></span>, then there exist <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><mi>S</mi><mo>=</mo><mrow><mo>{</mo><mi>w</mi><mo>:</mo><mrow><mo>|</mo><mi>N</mi><mrow><mo>[</mo><mi>w</mi><mo>]</mo></mrow><mo>∩</mo><mrow><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>}</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000453","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Wegner conjectured that if is a planar graph with maximum degree , then . This problem has received much attention, but remains open for all . Here we prove an analogous bound on : If is a plane graph with , then . In fact, this is a corollary of the following lemma, which is our main result. If is a plane graph with and is a maximal clique in with , then there exist such that .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.