Mechanistic understanding of the C-C/C-O bonds cleavage-methylation tandem reaction for the conversion of phenolic resins to hexamethylbenzene using γ-Al2O3

IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED
Gangqi Cheng , Xueru Chen , Ruizhe Chen , Jialiang Yang , Leilei Cheng , Jing Gu
{"title":"Mechanistic understanding of the C-C/C-O bonds cleavage-methylation tandem reaction for the conversion of phenolic resins to hexamethylbenzene using γ-Al2O3","authors":"Gangqi Cheng ,&nbsp;Xueru Chen ,&nbsp;Ruizhe Chen ,&nbsp;Jialiang Yang ,&nbsp;Leilei Cheng ,&nbsp;Jing Gu","doi":"10.1016/j.fuproc.2024.108086","DOIUrl":null,"url":null,"abstract":"<div><p>The high-value recycling of discarded phenol-formaldehyde resins (PF) remains an unresolved challenge. Herein, we propose a novel approach leveraging γ-Al<sub>2</sub>O<sub>3</sub> to convert PF into high-value hexamethylbenzene at a low temperature using a one-pot method. This study explores the degradation capability of PF, methylation reaction efficiency, and hydrodeoxygenation capacity among various cost-effective commercial catalysts: γ-Al<sub>2</sub>O<sub>3</sub>, ZrO<sub>2</sub>, and TiO<sub>2</sub>. It reveals the influence of different reaction times on PF pyrolysis and product distribution, and it was found that high value-added hexamethylbenzene exhibited the highest yield (73.33 wt%) with selectivity (75.83%) using γ-Al<sub>2</sub>O<sub>3</sub> at 350 °C and 2 h of reaction. Experiments using PF models demonstrate the crucial synergy between γ-Al<sub>2</sub>O<sub>3</sub> and C(aryl)-OH in the cleavage of C(aryl)-C(alkyl) bonds and methylation reactions. A pathway for PF C-C/C-O bonds cleavage-methylation tandem reaction is proposed, based on <sup>13</sup>C methanol isotope experiments. PF undergoes C(aryl)-C(alkyl) bond cleavage to produce phenolic intermediates, which were then methylated; this is accompanied by the cleavage of C(aryl)-OH and C(aryl)-OCH<sub>3</sub>, culminating in C-alkylation to form hexamethylbenzene. This research provides new insights into the high-value recycling of PF.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"257 ","pages":"Article 108086"},"PeriodicalIF":7.2000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000560/pdfft?md5=bdaadfe3ab936f2557af35447ad3d494&pid=1-s2.0-S0378382024000560-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024000560","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The high-value recycling of discarded phenol-formaldehyde resins (PF) remains an unresolved challenge. Herein, we propose a novel approach leveraging γ-Al2O3 to convert PF into high-value hexamethylbenzene at a low temperature using a one-pot method. This study explores the degradation capability of PF, methylation reaction efficiency, and hydrodeoxygenation capacity among various cost-effective commercial catalysts: γ-Al2O3, ZrO2, and TiO2. It reveals the influence of different reaction times on PF pyrolysis and product distribution, and it was found that high value-added hexamethylbenzene exhibited the highest yield (73.33 wt%) with selectivity (75.83%) using γ-Al2O3 at 350 °C and 2 h of reaction. Experiments using PF models demonstrate the crucial synergy between γ-Al2O3 and C(aryl)-OH in the cleavage of C(aryl)-C(alkyl) bonds and methylation reactions. A pathway for PF C-C/C-O bonds cleavage-methylation tandem reaction is proposed, based on 13C methanol isotope experiments. PF undergoes C(aryl)-C(alkyl) bond cleavage to produce phenolic intermediates, which were then methylated; this is accompanied by the cleavage of C(aryl)-OH and C(aryl)-OCH3, culminating in C-alkylation to form hexamethylbenzene. This research provides new insights into the high-value recycling of PF.

Abstract Image

利用 γ-Al2O3 将酚醛树脂转化为六甲基苯的 C-C/C-O 键裂解-甲基化串联反应的机理理解
废弃苯酚-甲醛树脂(PF)的高价值回收利用仍是一个尚未解决的难题。在此,我们提出了一种利用 γ-Al2O3 的新方法,采用一锅法在低温下将 PF 转化为高价值的六甲基苯。本研究探讨了γ-Al2O3、ZrO2 和 TiO2 等多种经济有效的商用催化剂对全氟辛烷磺酸的降解能力、甲基化反应效率和加氢脱氧能力。实验揭示了不同反应时间对 PF 热解和产物分布的影响,发现在 350 °C 和 2 小时反应时间内使用 γ-Al2O3 时,高附加值六甲基苯的产率最高(73.33 wt%),选择性最高(75.83%)。使用 PF 模型进行的实验证明,γ-Al2O3 和 C(芳基)-OH 在 C(芳基)-C(烷基)键的裂解和甲基化反应中具有重要的协同作用。根据 13C 甲醇同位素实验,提出了 PF C-C/C-O 键裂解-甲基化串联反应的途径。PF 经过 C(芳基)-C(烷基)键裂解生成酚类中间体,然后进行甲基化;伴随着 C(芳基)-OH 和 C(芳基)-OCH3 的裂解,最终发生 C-烷基化生成六甲基苯。这项研究为全氟辛烷磺酸的高价值回收利用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信