{"title":"Health diagnosis of ultrahigh arch dam performance using heterogeneous spatial panel vector model","authors":"Er-feng Zhao , Xin Li , Chong-shi Gu","doi":"10.1016/j.wse.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, more than ten ultrahigh arch dams have been constructed or are being constructed in China. Safety control is essential to long-term operation of these dams. This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams. A comprehensive analysis was conducted, focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China. Subsequently, the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored, including periodicity, convergence, and time-effect characteristics. These findings revealed the governing mechanism of main factors. Furthermore, a heterogeneous spatial panel vector model was developed, considering both common factors and specific factors affecting the safety and performance of arch dams. This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions, introducing a specific effect quantity to characterize local deformation differences. Ultimately, the proposed model was applied to the Xiaowan arch dam, accurately quantifying the spatiotemporal heterogeneity of dam performance. Additionally, the spatiotemporal distribution characteristics of environmental load effects on different parts of the dam were reasonably interpreted. Validation of the model prediction enhances its credibility, leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam. The findings not only enhance the predictive ability and timely control of ultrahigh arch dams’ performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 2","pages":"Pages 177-186"},"PeriodicalIF":3.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237024000255/pdfft?md5=4f4632dcc8091681a18a89d50976098f&pid=1-s2.0-S1674237024000255-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237024000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, more than ten ultrahigh arch dams have been constructed or are being constructed in China. Safety control is essential to long-term operation of these dams. This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams. A comprehensive analysis was conducted, focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China. Subsequently, the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored, including periodicity, convergence, and time-effect characteristics. These findings revealed the governing mechanism of main factors. Furthermore, a heterogeneous spatial panel vector model was developed, considering both common factors and specific factors affecting the safety and performance of arch dams. This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions, introducing a specific effect quantity to characterize local deformation differences. Ultimately, the proposed model was applied to the Xiaowan arch dam, accurately quantifying the spatiotemporal heterogeneity of dam performance. Additionally, the spatiotemporal distribution characteristics of environmental load effects on different parts of the dam were reasonably interpreted. Validation of the model prediction enhances its credibility, leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam. The findings not only enhance the predictive ability and timely control of ultrahigh arch dams’ performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.