Formation of vascular-like structures using a chemotaxis-driven multiphase model

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Georgina al-Badri , James B. Phillips , Rebecca J. Shipley , Nicholas C. Ovenden
{"title":"Formation of vascular-like structures using a chemotaxis-driven multiphase model","authors":"Georgina al-Badri ,&nbsp;James B. Phillips ,&nbsp;Rebecca J. Shipley ,&nbsp;Nicholas C. Ovenden","doi":"10.1016/j.mbs.2024.109183","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a continuum model for pattern formation, based on the multiphase model framework, to explore <em>in vitro</em> cell patterning within an extracellular matrix (ECM). We demonstrate that, within this framework, chemotaxis-driven cell migration can lead to the formation of cell clusters and vascular-like structures in 1D and 2D respectively. The influence on pattern formation of additional mechanisms commonly included in multiphase tissue models, including cell-matrix traction, contact inhibition, and cell–cell aggregation, are also investigated. Using sensitivity analysis, the relative impact of each model parameter on the simulation outcomes is assessed to identify the key parameters involved. Chemoattractant–matrix binding is further included, motivated by previous experimental studies, and found to reduce the spatial scale of patterning to within a biologically plausible range for capillary structures. Key findings from the in-depth parameter analysis of the 1D models, both with and without chemoattractant–matrix binding, are demonstrated to translate well to the 2D model, obtaining vascular-like cell patterning for multiple parameter regimes. Overall, we demonstrate a biologically-motivated multiphase model capable of generating long-term pattern formation on a biologically plausible spatial scale both in 1D and 2D, with applications for modelling <em>in vitro</em> vascular network formation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424000439/pdfft?md5=1d0428d2455ca3e54d8ab0ebd6b32ad1&pid=1-s2.0-S0025556424000439-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000439","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a continuum model for pattern formation, based on the multiphase model framework, to explore in vitro cell patterning within an extracellular matrix (ECM). We demonstrate that, within this framework, chemotaxis-driven cell migration can lead to the formation of cell clusters and vascular-like structures in 1D and 2D respectively. The influence on pattern formation of additional mechanisms commonly included in multiphase tissue models, including cell-matrix traction, contact inhibition, and cell–cell aggregation, are also investigated. Using sensitivity analysis, the relative impact of each model parameter on the simulation outcomes is assessed to identify the key parameters involved. Chemoattractant–matrix binding is further included, motivated by previous experimental studies, and found to reduce the spatial scale of patterning to within a biologically plausible range for capillary structures. Key findings from the in-depth parameter analysis of the 1D models, both with and without chemoattractant–matrix binding, are demonstrated to translate well to the 2D model, obtaining vascular-like cell patterning for multiple parameter regimes. Overall, we demonstrate a biologically-motivated multiphase model capable of generating long-term pattern formation on a biologically plausible spatial scale both in 1D and 2D, with applications for modelling in vitro vascular network formation.

利用趋化驱动多相模型形成血管样结构
我们在多相模型框架的基础上提出了一种模式形成的连续模型,用于探索细胞外基质中的体外细胞模式。我们证明,在这一框架内,趋化驱动的细胞迁移可分别导致一维和二维细胞簇和血管样结构的形成。我们还研究了多相组织模型中常见的其他机制对模式形成的影响,包括细胞-基质牵引、接触抑制和细胞-细胞聚集。通过敏感性分析,评估了每个模型参数对模拟结果的相对影响,以确定其中涉及的关键参数。根据之前的实验研究,进一步加入了化学吸引剂-基质结合,发现它能将图案化的空间尺度缩小到毛细管结构的生物合理范围内。对一维模型进行的深入参数分析(包括有无化学吸引基质结合)的主要发现被证明能很好地转化到二维模型中,从而在多种参数机制下获得类似血管的细胞图案。总之,我们展示了一种以生物为动机的多相模型,它能够在一维和二维的生物合理空间尺度上生成长期的模式形成,并可应用于体外血管网络形成的建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信