{"title":"Single-cell biclustering for cell-specific transcriptomic perturbation detection in AD progression.","authors":"Yuqiao Gong, Jingsi Xu, Maoying Wu, Ruitian Gao, Jianle Sun, Zhangsheng Yu, Yue Zhang","doi":"10.1016/j.crmeth.2024.100742","DOIUrl":null,"url":null,"abstract":"<p><p>The pathogenesis of Alzheimer disease (AD) involves complex gene regulatory changes across different cell types. To help decipher this complexity, we introduce single-cell Bayesian biclustering (scBC), a framework for identifying cell-specific gene network biomarkers in scRNA and snRNA-seq data. Through biclustering, scBC enables the analysis of perturbations in functional gene modules at the single-cell level. Applying the scBC framework to AD snRNA-seq data reveals the perturbations within gene modules across distinct cell groups and sheds light on gene-cell correlations during AD progression. Notably, our method helps to overcome common challenges in single-cell data analysis, including batch effects and dropout events. Incorporating prior knowledge further enables the framework to yield more biologically interpretable results. Comparative analyses on simulated and real-world datasets demonstrate the precision and robustness of our approach compared to other state-of-the-art biclustering methods. scBC holds potential for unraveling the mechanisms underlying polygenic diseases characterized by intricate gene coexpression patterns.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The pathogenesis of Alzheimer disease (AD) involves complex gene regulatory changes across different cell types. To help decipher this complexity, we introduce single-cell Bayesian biclustering (scBC), a framework for identifying cell-specific gene network biomarkers in scRNA and snRNA-seq data. Through biclustering, scBC enables the analysis of perturbations in functional gene modules at the single-cell level. Applying the scBC framework to AD snRNA-seq data reveals the perturbations within gene modules across distinct cell groups and sheds light on gene-cell correlations during AD progression. Notably, our method helps to overcome common challenges in single-cell data analysis, including batch effects and dropout events. Incorporating prior knowledge further enables the framework to yield more biologically interpretable results. Comparative analyses on simulated and real-world datasets demonstrate the precision and robustness of our approach compared to other state-of-the-art biclustering methods. scBC holds potential for unraveling the mechanisms underlying polygenic diseases characterized by intricate gene coexpression patterns.