Nasim Jafari, Saeed Najavand, Mohammad Pazhang, Amir Abbas Matin
{"title":"Entrapment of Papain in Chitosan-Polyethylene Glycol Hybrid Nanohydrogels: Presenting a Model for Protein Delivery Systems.","authors":"Nasim Jafari, Saeed Najavand, Mohammad Pazhang, Amir Abbas Matin","doi":"10.1007/s12033-024-01129-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the process of manufacturing nanohydrogels containing papain and how to release it was investigated. Chitosan nanohydrogels and chitosan-polyethylene glycol hybrid nanohydrogels were used to entrapment of papain as a protein model. In order to evaluate and confirm different properties of nanohydrogels such as size, shape, the rate of swelling and flexibility, different methods was used. The maximum amount of papain entrapment was observed in 0.75% concentration of chitosan and 1% concentration of sodium Tripolyphosphate (TPP) as linker. The results of scanning electron microscope (SEM) and X-ray diffraction (XRD) patterns showed that nanohydrogels containing papain on a nano scale are very porous and swollen. Differential scanning calorimetry (DSC) thermograms analysis showed that nanohydrogels have relatively good water absorption capacity. Also, by adding polyethylene glycol to chitosan, the melting temperature of hybrid nanohydrogels decreased and this can be a reason for the formation of flexible structures in these nanohydrogels. In chitosan nanohydrogels, the highest release rate of papain was observed at pH lower than 7 and high temperatures, but by adding polyethylene glycol to the chitosan, in addition to increasing papain release, a proper and continuous release of papain was observed at temperature and pH close to physiological conditions, especially at low ratios of polyethylene glycol. According to the present results, hybrid nanohydrogels can have a good potential in protein delivery systems in terms of structure and release.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"1433-1445"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01129-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the process of manufacturing nanohydrogels containing papain and how to release it was investigated. Chitosan nanohydrogels and chitosan-polyethylene glycol hybrid nanohydrogels were used to entrapment of papain as a protein model. In order to evaluate and confirm different properties of nanohydrogels such as size, shape, the rate of swelling and flexibility, different methods was used. The maximum amount of papain entrapment was observed in 0.75% concentration of chitosan and 1% concentration of sodium Tripolyphosphate (TPP) as linker. The results of scanning electron microscope (SEM) and X-ray diffraction (XRD) patterns showed that nanohydrogels containing papain on a nano scale are very porous and swollen. Differential scanning calorimetry (DSC) thermograms analysis showed that nanohydrogels have relatively good water absorption capacity. Also, by adding polyethylene glycol to chitosan, the melting temperature of hybrid nanohydrogels decreased and this can be a reason for the formation of flexible structures in these nanohydrogels. In chitosan nanohydrogels, the highest release rate of papain was observed at pH lower than 7 and high temperatures, but by adding polyethylene glycol to the chitosan, in addition to increasing papain release, a proper and continuous release of papain was observed at temperature and pH close to physiological conditions, especially at low ratios of polyethylene glycol. According to the present results, hybrid nanohydrogels can have a good potential in protein delivery systems in terms of structure and release.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.