Docetaxel, cyclophosphamide, and epirubicin: application of PBPK modeling to gain new insights for drug-drug interactions.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Tongtong Li, Sufeng Zhou, Lu Wang, Tangping Zhao, Jue Wang, Feng Shao
{"title":"Docetaxel, cyclophosphamide, and epirubicin: application of PBPK modeling to gain new insights for drug-drug interactions.","authors":"Tongtong Li, Sufeng Zhou, Lu Wang, Tangping Zhao, Jue Wang, Feng Shao","doi":"10.1007/s10928-024-09912-z","DOIUrl":null,"url":null,"abstract":"<p><p>The new adjuvant chemotherapy of docetaxel, epirubicin, and cyclophosphamide has been recommended for treating breast cancer. It is necessary to investigate the potential drug-drug Interactions (DDIs) since they have a narrow therapeutic window in which slight differences in exposure might result in significant differences in treatment efficacy and tolerability. To guide clinical rational drug use, this study aimed to evaluate the DDI potentials of docetaxel, cyclophosphamide, and epirubicin in cancer patients using physiologically based pharmacokinetic (PBPK) models. The GastroPlus™ was used to develop the PBPK models, which were refined and validated with observed data. The established PBPK models accurately described the pharmacokinetics (PKs) of three drugs in cancer patients, and the predicted-to-observed ratios of all the PK parameters met the acceptance criterion. The PBPK model predicted no significant changes in plasma concentrations of these drugs during co-administration, which was consistent with the observed clinical phenomenon. Besides, the verified PBPK models were then used to predict the effect of other Cytochrome P450 3A4 (CYP3A4) inhibitors/inducers on these drug exposures. In the DDI simulation, strong CYP3A4 modulators changed the exposure of three drugs by 0.71-1.61 fold. Therefore, patients receiving these drugs in combination with strong CYP3A4 inhibitors should be monitored regularly to prevent adverse reactions. Furthermore, co-administration of docetaxel, cyclophosphamide, or epirubicin with strong CYP3A4 inducers should be avoided. In conclusion, the PBPK models can be used to further investigate the DDI potential of each drug and to develop dosage recommendations for concurrent usage by additional perpetrators or victims.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"367-384"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09912-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The new adjuvant chemotherapy of docetaxel, epirubicin, and cyclophosphamide has been recommended for treating breast cancer. It is necessary to investigate the potential drug-drug Interactions (DDIs) since they have a narrow therapeutic window in which slight differences in exposure might result in significant differences in treatment efficacy and tolerability. To guide clinical rational drug use, this study aimed to evaluate the DDI potentials of docetaxel, cyclophosphamide, and epirubicin in cancer patients using physiologically based pharmacokinetic (PBPK) models. The GastroPlus™ was used to develop the PBPK models, which were refined and validated with observed data. The established PBPK models accurately described the pharmacokinetics (PKs) of three drugs in cancer patients, and the predicted-to-observed ratios of all the PK parameters met the acceptance criterion. The PBPK model predicted no significant changes in plasma concentrations of these drugs during co-administration, which was consistent with the observed clinical phenomenon. Besides, the verified PBPK models were then used to predict the effect of other Cytochrome P450 3A4 (CYP3A4) inhibitors/inducers on these drug exposures. In the DDI simulation, strong CYP3A4 modulators changed the exposure of three drugs by 0.71-1.61 fold. Therefore, patients receiving these drugs in combination with strong CYP3A4 inhibitors should be monitored regularly to prevent adverse reactions. Furthermore, co-administration of docetaxel, cyclophosphamide, or epirubicin with strong CYP3A4 inducers should be avoided. In conclusion, the PBPK models can be used to further investigate the DDI potential of each drug and to develop dosage recommendations for concurrent usage by additional perpetrators or victims.

多西他赛、环磷酰胺和表柔比星:应用 PBPK 模型获得药物间相互作用的新见解。
多西他赛、表柔比星和环磷酰胺已被推荐用于治疗乳腺癌的新辅助化疗。由于多西他赛、表柔比星和环磷酰胺的治疗窗口较窄,其暴露量的微小差异就可能导致治疗效果和耐受性的显著差异,因此有必要研究其潜在的药物间相互作用(DDIs)。为了指导临床合理用药,本研究旨在利用生理学药代动力学(PBPK)模型评估多西他赛、环磷酰胺和表柔比星在癌症患者中的 DDI 潜力。GastroPlus™ 用于开发 PBPK 模型,并根据观察到的数据对其进行改进和验证。所建立的 PBPK 模型准确地描述了三种药物在癌症患者体内的药代动力学(PK),所有 PK 参数的预测值与观察值之比都达到了接受标准。PBPK模型预测这些药物在联合用药期间的血浆浓度不会发生显著变化,这与观察到的临床现象一致。此外,经过验证的 PBPK 模型还用于预测其他细胞色素 P450 3A4 (CYP3A4) 抑制剂/诱导剂对这些药物暴露量的影响。在 DDI 模拟中,强 CYP3A4 调节剂使三种药物的暴露量改变了 0.71-1.61 倍。因此,应定期监测与强 CYP3A4 抑制剂合用这些药物的患者,以防止不良反应的发生。此外,应避免多西他赛、环磷酰胺或表柔比星与强 CYP3A4 诱导剂合用。总之,PBPK 模型可用于进一步研究每种药物的 DDI 潜力,并为其他施药者或受害者同时用药制定剂量建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信