The SPATA5-SPATA5L1 ATPase complex directs replisome proteostasis to ensure genome integrity.

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2024-04-25 Epub Date: 2024-03-29 DOI:10.1016/j.cell.2024.03.002
Vidhya Krishnamoorthy, Martina Foglizzo, Robert L Dilley, Angela Wu, Arindam Datta, Parul Dutta, Lisa J Campbell, Oksana Degtjarik, Laura J Musgrove, Antonio N Calabrese, Elton Zeqiraj, Roger A Greenberg
{"title":"The SPATA5-SPATA5L1 ATPase complex directs replisome proteostasis to ensure genome integrity.","authors":"Vidhya Krishnamoorthy, Martina Foglizzo, Robert L Dilley, Angela Wu, Arindam Datta, Parul Dutta, Lisa J Campbell, Oksana Degtjarik, Laura J Musgrove, Antonio N Calabrese, Elton Zeqiraj, Roger A Greenberg","doi":"10.1016/j.cell.2024.03.002","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":" ","pages":"2250-2268.e31"},"PeriodicalIF":45.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.03.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.

Abstract Image

SPATA5-SPATA5L1 ATPase 复合物指导着复制体蛋白稳态,以确保基因组的完整性。
VCP/p97 对 CMG 螺旋酶的泛素依赖性解折是终止 DNA 复制所必需的。其他复制体成分并不是以同样的方式处理的,这表明复制蛋白的周转还需要其他机制。在这里,我们确定了复制体因子与由 AAA+ ATP 酶 SPATA5-SPATA5L1 和异源二聚体伙伴 C1orf109-CINP (55LCC) 组成的蛋白复合物的相互作用。综合结构生物学方法揭示了 SPATA5-SPATA5L1 N 端结构域与 C1orf109-CINP 相互作用的分子结构,从而在圆柱形 ATPase 马达上方形成漏斗状结构。55LCC 复合物缺乏会引起泛素依赖性蛋白毒性、复制应激和严重的染色体不稳定性。55LCC 的 ATPase 活性在复制叉 DNA 的作用下特异性增强,并与半胱氨酸蛋白酶依赖性的复制体底物裂解结合在一起,以应对复制叉损伤。这些发现确定了 55LCC 介导的蛋白稳态对复制叉的进展和基因组的稳定至关重要,并为相关人类神经发育疾病中的致病变体提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信