Calibration and validation of the rule-based human driver model for car-following behaviors at roundabout using naturalistic driving data

Junhee Choi , Dong-Kyu Kim
{"title":"Calibration and validation of the rule-based human driver model for car-following behaviors at roundabout using naturalistic driving data","authors":"Junhee Choi ,&nbsp;Dong-Kyu Kim","doi":"10.1016/j.eastsj.2024.100129","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding driver behavior is crucial for introducing roundabouts. This study focuses on calibrating the parameters of the car-following model using naturalistic data and analyzing the appropriateness of different car-following models on the roundabout. We utilize rounD trajectory dataset. This dataset allows for the precise definition of lead and follow vehicles, enabling the calibration of model parameters accordingly. We compared the calibration results for roundabouts with those obtained for signalized intersections from CitySim. Our results show that the Krauss and intelligent driver models (IDM) achieve mean absolute percentage errors of 10.09% and 23.21%, respectively. Furthermore, IDM exhibited higher errors in the circulation segment of the roundabout, while in the exit segment, the Krauss model showed elevated errors. It contrasted with the homogenous results obtained in the signalized intersection. These findings provide valuable insights into driver's behavior on roundabouts.</p></div>","PeriodicalId":100131,"journal":{"name":"Asian Transport Studies","volume":"10 ","pages":"Article 100129"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2185556024000075/pdfft?md5=05e1a5121f51a228da42f37ad15b0444&pid=1-s2.0-S2185556024000075-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Transport Studies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2185556024000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding driver behavior is crucial for introducing roundabouts. This study focuses on calibrating the parameters of the car-following model using naturalistic data and analyzing the appropriateness of different car-following models on the roundabout. We utilize rounD trajectory dataset. This dataset allows for the precise definition of lead and follow vehicles, enabling the calibration of model parameters accordingly. We compared the calibration results for roundabouts with those obtained for signalized intersections from CitySim. Our results show that the Krauss and intelligent driver models (IDM) achieve mean absolute percentage errors of 10.09% and 23.21%, respectively. Furthermore, IDM exhibited higher errors in the circulation segment of the roundabout, while in the exit segment, the Krauss model showed elevated errors. It contrasted with the homogenous results obtained in the signalized intersection. These findings provide valuable insights into driver's behavior on roundabouts.

利用自然驾驶数据校准和验证基于规则的人类驾驶员环岛跟车行为模型
了解驾驶员的行为对于引入环岛至关重要。本研究的重点是利用自然数据校准汽车跟随模型的参数,并分析不同汽车跟随模型在环岛上的适用性。我们利用了 rounD 轨迹数据集。该数据集可精确定义领跑车辆和跟车车辆,从而校准相应的模型参数。我们将环岛的校准结果与 CitySim 中信号灯路口的校准结果进行了比较。结果显示,克劳斯模型和智能驾驶员模型(IDM)的平均绝对百分比误差分别为 10.09% 和 23.21%。此外,IDM 在环岛的循环段表现出更高的误差,而在出口段,Krauss 模型则表现出更高的误差。这与在信号灯路口获得的同质结果形成了鲜明对比。这些发现为了解驾驶员在环岛上的行为提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信