Boosting hydroxyl radical generation for highly efficient electrooxidation of sulfamethazine via facile doping strategy

Yina Tian , Lingchao Kong , Hua Zou , Ming Liu , Guoshuai Liu
{"title":"Boosting hydroxyl radical generation for highly efficient electrooxidation of sulfamethazine via facile doping strategy","authors":"Yina Tian ,&nbsp;Lingchao Kong ,&nbsp;Hua Zou ,&nbsp;Ming Liu ,&nbsp;Guoshuai Liu","doi":"10.1016/j.horiz.2024.100103","DOIUrl":null,"url":null,"abstract":"<div><p>The one-electron water oxidation reaction (WOR) to generates hydroxyl radicals (<sup>•</sup>OH) plays a pivotal role in electrochemical advanced oxidation processes (EAOPs). In this study, we present a novel and facile strategy involving Ho-doping to regulate the electronic configuration of the conventionally nonactive PbO<sub>2</sub> electrode. Experimental findings demonstrate that PbO<sub>2</sub> doped with 2.4% Ho achieves the highest degradation performance of sulfamethazine (SMZ) (∼100%; <em>k</em><sub>obs</sub> = 0.093 min<sup>−1</sup>) and highest <sup>•</sup>OH generation efficiency with a relatively concentration of <sup>•</sup>OH = 1.9 × 10<sup>7</sup>. The doped electrodes exhibit a notable enhancement compare to the undoped electrode, which elevating SMZ degradation efficiency and <sup>•</sup>OH generation by factors of 1.45 and 3.8, respectively. Electrochemical characterization and degradation results elucidate that the modulation of electron transfer rate and oxygen evolution potential are crucial factors governing the performance of the Ho-doped PbO<sub>2</sub> anode. Specifically, maintaining a suitably high oxygen evolution potential (OEP) enables the thermodynamically feasible production of <sup>•</sup>OH, while a relatively fast electron transfer rate ensures the generation of H<sub>2</sub>O<sup>+</sup> (the oxidation precursor of <sup>•</sup>OH) with kinetic feasibility. Furthermore, a degradation pathway for SMZ is proposed based on the identification of transformation mechanism using density functional calculation (DFT) and the detection of intermediates via LC-MS/MS. This study provides an universal strategy for simultaneously enhancing the OEP and optimizing the electron transfer rate of an EAOP anode through the modulation of anodic electronic configuration, thereby advancing the field of efficient water treatment applications.</p></div>","PeriodicalId":101199,"journal":{"name":"Sustainable Horizons","volume":"11 ","pages":"Article 100103"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772737824000154/pdfft?md5=debd76223dc88aa1320b24c47fb6b098&pid=1-s2.0-S2772737824000154-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Horizons","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772737824000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The one-electron water oxidation reaction (WOR) to generates hydroxyl radicals (OH) plays a pivotal role in electrochemical advanced oxidation processes (EAOPs). In this study, we present a novel and facile strategy involving Ho-doping to regulate the electronic configuration of the conventionally nonactive PbO2 electrode. Experimental findings demonstrate that PbO2 doped with 2.4% Ho achieves the highest degradation performance of sulfamethazine (SMZ) (∼100%; kobs = 0.093 min−1) and highest OH generation efficiency with a relatively concentration of OH = 1.9 × 107. The doped electrodes exhibit a notable enhancement compare to the undoped electrode, which elevating SMZ degradation efficiency and OH generation by factors of 1.45 and 3.8, respectively. Electrochemical characterization and degradation results elucidate that the modulation of electron transfer rate and oxygen evolution potential are crucial factors governing the performance of the Ho-doped PbO2 anode. Specifically, maintaining a suitably high oxygen evolution potential (OEP) enables the thermodynamically feasible production of OH, while a relatively fast electron transfer rate ensures the generation of H2O+ (the oxidation precursor of OH) with kinetic feasibility. Furthermore, a degradation pathway for SMZ is proposed based on the identification of transformation mechanism using density functional calculation (DFT) and the detection of intermediates via LC-MS/MS. This study provides an universal strategy for simultaneously enhancing the OEP and optimizing the electron transfer rate of an EAOP anode through the modulation of anodic electronic configuration, thereby advancing the field of efficient water treatment applications.

Abstract Image

通过简便的掺杂策略促进羟基自由基的生成,实现磺胺甲基嘧啶的高效电氧化
单电子水氧化反应(WOR)生成羟基自由基(-OH)在电化学高级氧化过程(EAOPs)中起着举足轻重的作用。在本研究中,我们提出了一种新颖而简便的策略,即通过掺杂 Ho 来调节传统非活性 PbO2 电极的电子构型。实验结果表明,掺杂了 2.4% Ho 的 PbO2 可实现最高的磺胺甲基嗪(SMZ)降解性能(∼100%;kobs = 0.093 min-1)和最高的-OH 生成效率(-OH 的相对浓度为 1.9 × 107)。与未掺杂电极相比,掺杂电极具有显著的增强效果,SMZ 降解效率和 -OH 生成效率分别提高了 1.45 倍和 3.8 倍。电化学表征和降解结果表明,电子传递速率和氧进化电位的调节是影响掺杂 Ho 的二氧化铅阳极性能的关键因素。具体来说,保持适当高的氧演化电位(OEP)可在热力学上可行地产生 -OH,而相对较快的电子转移率则可确保在动力学上可行地生成 H2O+(-OH 的氧化前体)。此外,在利用密度泛函计算(DFT)确定转化机制和通过 LC-MS/MS 检测中间产物的基础上,提出了 SMZ 的降解途径。该研究提供了一种通用策略,可通过调控阳极电子构型同时提高 EAOP 阳极的 OEP 和优化电子传输速率,从而推动高效水处理应用领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信