Conclusive demonstration of iatrogenic Alzheimer's disease transmission in a model of stem cell transplantation.

IF 5.9 2区 医学 Q1 CELL & TISSUE ENGINEERING
Stem Cell Reports Pub Date : 2024-04-09 Epub Date: 2024-03-28 DOI:10.1016/j.stemcr.2024.02.012
Chaahat S B Singh, Kelly Marie Johns, Suresh Kari, Lonna Munro, Angela Mathews, Franz Fenninger, Cheryl G Pfeifer, Wilfred A Jefferies
{"title":"Conclusive demonstration of iatrogenic Alzheimer's disease transmission in a model of stem cell transplantation.","authors":"Chaahat S B Singh, Kelly Marie Johns, Suresh Kari, Lonna Munro, Angela Mathews, Franz Fenninger, Cheryl G Pfeifer, Wilfred A Jefferies","doi":"10.1016/j.stemcr.2024.02.012","DOIUrl":null,"url":null,"abstract":"<p><p>The risk of iatrogenic disease is often underestimated as a concern in contemporary medical procedures, encompassing tissue and organ transplantation, stem cell therapies, blood transfusions, and the administration of blood-derived products. In this context, despite the prevailing belief that Alzheimer's disease (AD) manifests primarily in familial and sporadic forms, our investigation reveals an unexpected transplantable variant of AD in a preclinical context, potentially indicating iatrogenic transmission in AD patients. Through adoptive transplantation of donor bone marrow stem cells carrying a mutant human amyloid precursor protein (APP) transgene into either APP-deficient knockout or normal recipient animals, we observed rapid development of AD pathological hallmarks. These pathological features were significantly accelerated and emerged within 6-9 months post transplantation and included compromised blood-brain barrier integrity, heightened cerebral vascular neoangiogenesis, elevated brain-associated β-amyloid levels, and cognitive impairment. Furthermore, our findings underscore the contribution of β-amyloid burden originating outside of the central nervous system to AD pathogenesis within the brain. We conclude that stem cell transplantation from donors harboring a pathogenic mutant allele can effectively transfer central nervous system diseases to healthy recipients, mirroring the pathogenesis observed in the donor. Consequently, our observations advocate for genomic sequencing of donor specimens prior to tissue, organ, or stem cell transplantation therapies, as well as blood transfusions and blood-derived product administration, to mitigate the risk of iatrogenic diseases.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.02.012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The risk of iatrogenic disease is often underestimated as a concern in contemporary medical procedures, encompassing tissue and organ transplantation, stem cell therapies, blood transfusions, and the administration of blood-derived products. In this context, despite the prevailing belief that Alzheimer's disease (AD) manifests primarily in familial and sporadic forms, our investigation reveals an unexpected transplantable variant of AD in a preclinical context, potentially indicating iatrogenic transmission in AD patients. Through adoptive transplantation of donor bone marrow stem cells carrying a mutant human amyloid precursor protein (APP) transgene into either APP-deficient knockout or normal recipient animals, we observed rapid development of AD pathological hallmarks. These pathological features were significantly accelerated and emerged within 6-9 months post transplantation and included compromised blood-brain barrier integrity, heightened cerebral vascular neoangiogenesis, elevated brain-associated β-amyloid levels, and cognitive impairment. Furthermore, our findings underscore the contribution of β-amyloid burden originating outside of the central nervous system to AD pathogenesis within the brain. We conclude that stem cell transplantation from donors harboring a pathogenic mutant allele can effectively transfer central nervous system diseases to healthy recipients, mirroring the pathogenesis observed in the donor. Consequently, our observations advocate for genomic sequencing of donor specimens prior to tissue, organ, or stem cell transplantation therapies, as well as blood transfusions and blood-derived product administration, to mitigate the risk of iatrogenic diseases.

Abstract Image

在干细胞移植模型中确证了先天性阿尔茨海默病的传播。
在当代医疗程序中,包括组织和器官移植、干细胞疗法、输血和血液制品的使用,先天性疾病的风险往往被低估。在这种情况下,尽管人们普遍认为阿尔茨海默病(AD)主要表现为家族性和散发性形式,但我们的研究却在临床前背景下发现了一种意想不到的可移植变异型AD,这可能表明AD患者中存在先天性传播。通过将携带突变型人类淀粉样前体蛋白(APP)转基因的供体骨髓干细胞移植到APP缺陷基因敲除动物或正常受体动物体内,我们观察到了AD病理特征的快速发展。这些病理特征在移植后6-9个月内明显加速并出现,包括血脑屏障完整性受损、脑血管新血管生成增加、脑相关β淀粉样蛋白水平升高和认知障碍。此外,我们的研究结果还强调了中枢神经系统外的β淀粉样蛋白负担对大脑内AD发病机制的影响。我们的结论是,从携带致病突变等位基因的供体进行干细胞移植,可有效地将中枢神经系统疾病转移给健康的受体,反映出在供体身上观察到的发病机制。因此,我们的观察主张在组织、器官或干细胞移植疗法以及输血和血液衍生产品管理之前,对供体标本进行基因组测序,以降低先天性疾病的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Reports
Stem Cell Reports CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
10.50
自引率
1.70%
发文量
200
审稿时长
28 weeks
期刊介绍: Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信