DELVE: feature selection for preserving biological trajectories in single-cell data.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jolene S Ranek, Wayne Stallaert, J Justin Milner, Margaret Redick, Samuel C Wolff, Adriana S Beltran, Natalie Stanley, Jeremy E Purvis
{"title":"DELVE: feature selection for preserving biological trajectories in single-cell data.","authors":"Jolene S Ranek, Wayne Stallaert, J Justin Milner, Margaret Redick, Samuel C Wolff, Adriana S Beltran, Natalie Stanley, Jeremy E Purvis","doi":"10.1038/s41467-024-46773-z","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package: https://github.com/jranek/delve .</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"2765"},"PeriodicalIF":15.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-46773-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package: https://github.com/jranek/delve .

DELVE:在单细胞数据中保留生物轨迹的特征选择。
单细胞技术可以测量正在经历动态生物过程的单个细胞中成千上万个分子特征的表达。虽然沿着计算有序的伪时间轨迹检查细胞可以揭示基因或蛋白质表达的变化如何影响细胞命运,但由于单细胞数据固有的噪声,识别这种动态特征具有挑战性。在这里,我们提出了一种无监督特征选择方法 DELVE,用于识别能稳健再现细胞轨迹的代表性分子特征子集。与之前的工作不同,DELVE 采用了一种自下而上的方法来减轻干扰变异源的影响,并根据核心调控复合物从动态基因或蛋白质模块来模拟细胞状态。通过模拟、单细胞 RNA 测序以及细胞周期和细胞分化背景下的迭代免疫荧光成像数据,我们展示了 DELVE 如何选择能更好地定义细胞类型和细胞类型转换的特征。DELVE 是一个开源 python 软件包:https://github.com/jranek/delve 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信