A rate-dependent aging constitutive model of EPDM rubber

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL
Xiaoyang Wang, Zhanjiang Wang, Dianjie Jiang
{"title":"A rate-dependent aging constitutive model of EPDM rubber","authors":"Xiaoyang Wang,&nbsp;Zhanjiang Wang,&nbsp;Dianjie Jiang","doi":"10.1007/s00396-024-05250-1","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the rate-dependent non-aging constitutive model and the rate-independent aging constitutive model, a rate-dependent aging constitutive model is proposed to explain the changes in mechanical properties of ethylene propylene diene monomer (EPDM) rubber under different strain rates and aging states. In order to simulate the actual use state of rubber, accelerated aging tests are conducted on the samples in a hot air aging environment. The grey wolf algorithm is utilized to accurately fit the engineering stress–strain curve obtained from the experiment, obtaining specific coefficient values that represent the effects of strain rate, aging time, and aging temperature in the constitutive model. The results confirm the effectiveness of the proposed rate-dependent aging constitutive model in accurately predicting the mechanical property changes of EPDM rubber under different strain rates and aging states. The consistency between the experimental data and the calculated results is within the acceptable error range. It is worth noting that the stress in the model shows the dependence on strain rate, aging time and aging temperature, emphasizing the mechanical property changes of EPDM rubber at high temperatures and low strain rates simulated in the uniaxial tensile state.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05250-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the rate-dependent non-aging constitutive model and the rate-independent aging constitutive model, a rate-dependent aging constitutive model is proposed to explain the changes in mechanical properties of ethylene propylene diene monomer (EPDM) rubber under different strain rates and aging states. In order to simulate the actual use state of rubber, accelerated aging tests are conducted on the samples in a hot air aging environment. The grey wolf algorithm is utilized to accurately fit the engineering stress–strain curve obtained from the experiment, obtaining specific coefficient values that represent the effects of strain rate, aging time, and aging temperature in the constitutive model. The results confirm the effectiveness of the proposed rate-dependent aging constitutive model in accurately predicting the mechanical property changes of EPDM rubber under different strain rates and aging states. The consistency between the experimental data and the calculated results is within the acceptable error range. It is worth noting that the stress in the model shows the dependence on strain rate, aging time and aging temperature, emphasizing the mechanical property changes of EPDM rubber at high temperatures and low strain rates simulated in the uniaxial tensile state.

Graphical Abstract

Abstract Image

Abstract Image

三元乙丙橡胶随速率变化的老化构成模型
在与速率相关的非老化构成模型和与速率无关的老化构成模型的基础上,提出了与速率相关的老化构成模型,以解释乙丙橡胶(EPDM)在不同应变速率和老化状态下的机械性能变化。为了模拟橡胶的实际使用状态,在热空气老化环境中对样品进行了加速老化试验。利用灰狼算法精确拟合实验所得的工程应力-应变曲线,得到代表构成模型中应变率、老化时间和老化温度影响的特定系数值。结果证实了所提出的速率依赖性老化构成模型在准确预测不同应变速率和老化状态下三元乙丙橡胶机械性能变化方面的有效性。实验数据与计算结果之间的一致性在可接受的误差范围内。值得注意的是,模型中的应力表现出与应变速率、老化时间和老化温度的依赖关系,强调了在高温和低应变速率下模拟单轴拉伸状态下三元乙丙橡胶的力学性能变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信