{"title":"Roles of Metal Nanoparticles for Supercapacitors: A Review","authors":"Ailan Yan, Xinchang Wang, Jipeng Cheng","doi":"10.1002/ppsc.202400002","DOIUrl":null,"url":null,"abstract":"Recent research on supercapacitors (SCs) has been attractive due to the potential application in a variety of fields related to energy storage. Electrode materials play a very important role for the performance of SCs and various metal nanoparticles are involved in the SC electrodes. In this paper, the roles of metal nanoparticles for SCs are reviewed and discussed. They can serve as a dopant to modify the surface of electrode materials, or be embedded in a composite to effectively reduce the resistance and lead to an enhanced specific capacitance. Some metal nanoparticles can be also employed as electrode materials directly, but easily being oxidized. Metallic nanoparticles can even act as current collectors, especially for these noble metals with excellent stability and high conductivity. Nanoporous metals prepared by dealloying and electrochemical method can be used as both pseudocapacitive materials and current collector of SCs. Some important experimental data on this issue are summarized. A brief discussion on the future directions, challenges and opportunities in this topic is also provided.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400002","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research on supercapacitors (SCs) has been attractive due to the potential application in a variety of fields related to energy storage. Electrode materials play a very important role for the performance of SCs and various metal nanoparticles are involved in the SC electrodes. In this paper, the roles of metal nanoparticles for SCs are reviewed and discussed. They can serve as a dopant to modify the surface of electrode materials, or be embedded in a composite to effectively reduce the resistance and lead to an enhanced specific capacitance. Some metal nanoparticles can be also employed as electrode materials directly, but easily being oxidized. Metallic nanoparticles can even act as current collectors, especially for these noble metals with excellent stability and high conductivity. Nanoporous metals prepared by dealloying and electrochemical method can be used as both pseudocapacitive materials and current collector of SCs. Some important experimental data on this issue are summarized. A brief discussion on the future directions, challenges and opportunities in this topic is also provided.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.