A Nonlinear Elliptic PDE from Atmospheric Science: Well-Posedness and Regularity at Cloud Edge

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Antoine Remond-Tiedrez, Leslie M. Smith, Samuel N. Stechmann
{"title":"A Nonlinear Elliptic PDE from Atmospheric Science: Well-Posedness and Regularity at Cloud Edge","authors":"Antoine Remond-Tiedrez,&nbsp;Leslie M. Smith,&nbsp;Samuel N. Stechmann","doi":"10.1007/s00021-024-00865-4","DOIUrl":null,"url":null,"abstract":"<div><p>The precipitating quasi-geostrophic equations go beyond the (dry) quasi-geostrophic equations by incorporating the effects of moisture. This means that both precipitation and phase changes between a water-vapour phase (outside a cloud) and a water-vapour-plus-liquid phase (inside a cloud) are taken into account. In the dry case, provided that a Laplace equation is inverted, the quasi-geostrophic equations may be formulated as a nonlocal transport equation for a single scalar variable (the potential vorticity). In the case of the precipitating quasi-geostrophic equations, inverting the Laplacian is replaced by a more challenging adversary known as potential-vorticity-and-moisture inversion. The PDE to invert is nonlinear and piecewise elliptic with jumps in its coefficients across the cloud edge. However, its global ellipticity is a priori unclear due to the dependence of the phase boundary on the unknown itself. This is a free boundary problem where the location of the cloud edge is one of the unknowns. Here we present the first rigorous analysis of this PDE, obtaining existence, uniqueness, and regularity results. In particular the regularity results are nearly sharp. This analysis rests on the discovery of a variational formulation of the inversion. This novel formulation is used to answer a key question for applications: which quantities jump across the interface and which quantities remain continuous? Most notably we show that the gradient of the unknown pressure, or equivalently the streamfunction, is Hölder continuous across the cloud edge.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00865-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The precipitating quasi-geostrophic equations go beyond the (dry) quasi-geostrophic equations by incorporating the effects of moisture. This means that both precipitation and phase changes between a water-vapour phase (outside a cloud) and a water-vapour-plus-liquid phase (inside a cloud) are taken into account. In the dry case, provided that a Laplace equation is inverted, the quasi-geostrophic equations may be formulated as a nonlocal transport equation for a single scalar variable (the potential vorticity). In the case of the precipitating quasi-geostrophic equations, inverting the Laplacian is replaced by a more challenging adversary known as potential-vorticity-and-moisture inversion. The PDE to invert is nonlinear and piecewise elliptic with jumps in its coefficients across the cloud edge. However, its global ellipticity is a priori unclear due to the dependence of the phase boundary on the unknown itself. This is a free boundary problem where the location of the cloud edge is one of the unknowns. Here we present the first rigorous analysis of this PDE, obtaining existence, uniqueness, and regularity results. In particular the regularity results are nearly sharp. This analysis rests on the discovery of a variational formulation of the inversion. This novel formulation is used to answer a key question for applications: which quantities jump across the interface and which quantities remain continuous? Most notably we show that the gradient of the unknown pressure, or equivalently the streamfunction, is Hölder continuous across the cloud edge.

Abstract Image

大气科学中的非线性椭圆 PDE:云边缘的良好假设性和正则性
降水准地转方程在(干)准地转方程的基础上加入了水汽的影响。这意味着降水和水蒸气相(云外)与水蒸气加液体相(云内)之间的相变都被考虑在内。在干燥情况下,只要反演拉普拉斯方程,准地转方程就可以表述为单一标量变量(潜在涡度)的非局部传输方程。在降水准地转方程中,拉普拉斯方程的反演被一个更具挑战性的对手所取代,即潜在涡度和湿度反演。要反演的 PDE 是非线性的片状椭圆,其系数在云边缘会出现跳跃。然而,由于相边界与未知数本身的关系,其全局椭圆性并不明确。这是一个自由边界问题,云边缘的位置是未知数之一。在此,我们首次对这一 PDE 进行了严格分析,获得了存在性、唯一性和正则性结果。尤其是正则性结果近乎尖锐。这一分析依赖于反演的变分公式的发现。这种新颖的公式被用来回答应用中的一个关键问题:哪些量在界面上跳跃,哪些量保持连续?最值得注意的是,我们证明了未知压力梯度或等效的流函数在云边缘是霍尔德连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信